World's largest lake sheds light on climate change

Feb 17, 2011
The Baikal seal, or nerpa, lives in ice caves on the lake during the winter. It is the only freshwater seal in the world. Credit: Vadim Kantor, Greenpeace

(PhysOrg.com) -- Siberia's Lake Baikal, the world's oldest, deepest, and largest freshwater lake, has provided scientists with insight into the ways that climate change affects water temperature, which in turn affects life in the lake. The study is published in the journal PLoS ONE today.

" has the greatest of any lake in the world," explained co-author Stephanie Hampton, deputy director of UC Santa Barbara's National Center for Ecological Analysis & Synthesis (NCEAS). "And, thanks to the dedication of three generations of a family of Russian scientists, we have remarkable data on climate and lake temperature."

Beginning in the 1940's, Russian scientist Mikhail Kozhov took frequent and detailed measurements of the lake's temperature. His descendants continued the practice, including his granddaughter, Lyubov Izmest'eva at Irkutsk State University. She is a co-author of the study and a core member of the NCEAS team now exploring this treasure trove of scientific and historical records.

First author Steve Katz, of NOAA's Channel Islands National Marine Sanctuary, explained that the research team discovered many climate variability signals, called teleconnections, in the data. For example, changes in Lake Baikal correlate with monthly variability in El Niño indices, reflecting sea surface temperatures over the Pacific Ocean tens of thousands of kilometers away. At the same time, Lake Baikal's temperatures are influenced by strong interactions with Pacific Ocean pressure fields described by the Pacific Decadal Oscillation.

"Teasing these multiple signals apart in this study illuminated both the methods by which we can detect these overlapping sources of climate variability, and the role of jet stream variability in affecting the local ecosystem," said Katz.

Hampton added: "This work is important because we need to go beyond detecting past climate variation. We also need to know how those climate variations are actually translated into local ecosystem fluctuations and longer-term local changes. Seeing how physical drivers of local ecology –– like water temperature –– are in turn reflecting global climate systems will allow us to determine what important short-term ecological changes may take place, such as changes in lake productivity. They also help us to forecast consequences of climate variability."

This is Lake Baikal in winter. Credit: Lyubov Izmest'eva, Irkutsk State University

The scientists found that seasonality of Lake Baikal's surface water temperatures relate to the fluctuating intensity and path of the jet stream on multiple time scales. Although the lake has warmed over the past century, the changing of seasons was not found to trend in a single direction, such as later winters.

The climate indices reflect alterations in jet stream strength and trajectory, and these dynamics collectively appear to forecast seasonal onset in Siberia about three months in advance, according to the study. Lake Baikal's seasonality also tracked decadal-scale variations in the Earth's rotational velocity. The speed of the Earth's rotation determines the length of a day, which differs by milliseconds from day to day depending on the strength of atmospheric winds, including the jet stream. This scale of variability was also seen to affect the timing variability in seasonal lake warming and cooling, reinforcing the mechanistic role of the jet stream.

"Remarkably, the temperature record that reflects all these climate messages was collected by three generations of a single family of Siberian scientists, from 1946 to the present, and the correlation of temperature with atmospheric dynamics is further confirmation that this data set is of exceptionally high quality," said Katz. "This consistent dedication to understanding one of the world's most majestic lakes helps us understand not only the dynamics of Lake Baikal over the past 60 years, but also to recognize future scenarios for Lake Baikal. The statistical approach may be used for similar questions in other ecosystems, although we recognize that the exceptional quality and length of the Baikal data was one of the keys to our success."

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

Related Stories

Climate change threatens Lake Baikal's unique biota

May 01, 2009

Siberia's Lake Baikal, the world's largest and most biologically diverse lake, faces the prospect of severe ecological disruption as a result of climate change, according to an analysis by a joint US-Russian team in the May ...

Water pollution continues at famous Russian lake

Mar 24, 2008

Despite widespread concerns about preserving the world’s largest body of fresh water, researchers report that pollution is continuing in Russia’s fabled Lake Baikal. The study is scheduled for the April ...

Lake Superior might hit record low levels

Aug 15, 2007

Lake Superior is nearing a record low level for the month of August and might set records for September and October, U.S. government hydrologists said.

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.