Examining climate change effects on wheat

Feb 24, 2011

Wheat growers in the Southwest have a better idea about how to adjust to climate change in the decades ahead, thanks to U.S. Department of Agriculture (USDA) scientists in Arizona.

Researchers with the USDA's Agricultural Research Service (ARS) installed infrared heaters in experimental wheat fields at the agency's Arid-Land Agricultural Research Center in Maricopa, Ariz., to simulate growing conditions expected by 2050. ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of responding to .

Wheat is normally planted in Arizona in mid-winter, harvested in late May and irrigated throughout its growing season. Temperatures can range from below freezing in winter to above 100 degrees Fahrenheit in May. But increasing temperatures can drastically reduce yields and increase the threat of drought, making climate change a major concern.

The scientists planted wheat every six weeks between March of 2007 and May of 2009 and applied heat to six of 15 plantings, warming the crops planted each year in March, December, and September. They measured canopy conditions to ensure daytime temperatures in the heated plots rose by 2.7 degrees Fahrenheit and nighttime temperatures rose by 5 or 6 degrees. The team included Bruce Kimball, a retired ARS soil scientist who was the project leader; ARS Gerard Wall and Jeffrey White; and Michael Ottman, an agronomist with the University of Arizona.

The researchers used infrared (IR) heaters suspended above the plants, using a system known as a Temperature Free-Air Controlled Enhancement (T-FACE) apparatus. Developed by Kimball, T-FACE enables scientists to raise the temperature of experimental crops in open fields. The technology is also used by ARS researchers elsewhere and by more than a dozen other research groups around the world.

As expected, the heaters accelerated growth, increased soil temperatures, reduced , induced mild on the crops and had a nominal effect on photosynthesis.

But effects on yields depended on when the wheat was planted. When heat was applied to wheat planted in mid-winter, it grew faster, with a growth cycle that was ahead by a week, but there were no major differences in yield. But adding heat to wheat planted in September enabled the wheat to survive frosts between Christmas and New Year's both years with only moderate yield loss. planted at the same time in the unheated plots yielded nothing.

The results, published in Global Change Biology, will provide guidance to growers on how to adjust planting schedules as the climate warms. They also show the effectiveness of the T-FACE system for investigating climate change impacts.

Explore further: An uphill climb for mountain species?

More information: Read more about this research in the February 2011 issue of Agricultural Research magazine. www.ars.usda.gov/is/AR/archive/feb11/wheat0211.htm

Provided by United States Department of Agriculture

1 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

ARS Explores Ways to Keep Carbon in the Soil

Dec 03, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists are testing out alternative ways of tilling the soil and rotating crops to see if they can help wheat farmers in Oregon sequester more carbon ...

Cleaning the Chesapeake Bay from space

Aug 31, 2010

(PhysOrg.com) -- A pilot test of an innovative use of new remote sensing technologies to aid the Chesapeake Bay cleanup begins this year in Talbot County, Md., on the Bay's Eastern Shore.

Benefits of planting winter canola examined

Oct 12, 2010

Winter canola might soon be the crop of choice for Pacific Northwest farmers, thanks to research by U.S. Department of Agriculture (USDA) scientists and their partners. The multitasking annual plant can be used to control ...

Replicating Climate Change to Forecast its Effects

Dec 17, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists are replicating the effects of climate change to see what the future holds for soybeans, wheat and the soils where they grow.

Crops and Weeds: Climate Change's First Responders

Nov 11, 2009

(PhysOrg.com) -- A team of Agricultural Research Service (ARS) plant physiologists is studying how global climate change could affect food crop production--and prompt the evolution of even more resilient weeds.

Newly Cloned Gene Key to More Adaptable Wheat Varieties

Dec 05, 2006

In a research discovery that has practical implications for improving wheat varieties, a team of scientists at the University of California, Davis, and the U.S. Department of Agriculture have cloned a gene that controls the ...

Recommended for you

An uphill climb for mountain species?

10 hours ago

A recently published paper provides a history of scientific research on mountain ecosystems, looks at the issues threatening wildlife in these systems, and sets an agenda for biodiversity conservation throughout ...

Extinctions during human era worse than thought

11 hours ago

It's hard to comprehend how bad the current rate of species extinction around the world has become without knowing what it was before people came along. The newest estimate is that the pre-human rate was ...

Robotics to combat slimy pest

15 hours ago

One hundred years after they arrived in a sack of grain, white Italian snails are the target of beleaguered South Australian farmers who have joined forces with University of Sydney robotics experts to eradicate ...

Migratory fish scale to new heights

16 hours ago

WA scientists are the first to observe and document juvenile trout minnow (Galaxias truttaceus Valenciennes 1846) successfully negotiating a vertical weir wall by modifying their swimming technique to 'climb' ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

waugh2k
not rated yet Feb 24, 2011
Temperature is only one part of the picture - what about elevated CO2? How will that affect the growth of the wheat and the growth of plant pests?