Researchers describe measles viral protein movement

Jan 09, 2011

Mayo Clinic researchers have shown that proteins on the surface of a cell twist a viral protein into position, allowing the virus to start infection and cause disease, all in a movement as graceful as a ballroom dance. The findings appear in the current online issue of Nature Structural & Molecular Biology.

A team led by Roberto Cattaneo, Ph.D., a Mayo molecular biologist, describes the crucial initial steps taken by attachment proteins of the measles and related respiratory viruses with their cellular partners, the receptors. To get there, the research team built "handles" at different locations on a viral attachment , allowing them to be grabbed by an artificial receptor to start the dance.

Visualize the measles virus. It is small and has an outer "envelope" with two proteins, one that interacts with a cellular receptor, its dance partner, and another that fuses the viral envelope with the cell membrane, starting infection.

Measles virus, while long targeted for eradication through vaccination, still affects 10 million people and kills some 197,000 each year around the world. A long-running question is how the cell entry process begins.

"It was known that the viral attachment proteins always come in pairs, and recently it became clear that two pairs form a quartet," Dr. Cattaneo says. "Pairs initially face each other, and we show here that the upper bodies separate when the dance begins. We suggest that they then engage a partner from the other pair of the quartet, while the legs are still dancing with those of the original partner."

As this dance continues, the cellular receptors weaken the layer of attachment proteins that protects a lower layer of fusion proteins. When enough quartets become twisted and unstable, the top layer fails abruptly. This failure causes unfolding of the proteins in the lower layer, and, in turn, fusion with the cellular membrane. The viral genome, now inside the cell, tells it to stop dividing and mandates the building of new viruses.

Dr. Cattaneo has studied viruses for three decades, primarily as tools for new medical discoveries. Viruses, he says, can be transformed into vectors to treat disease. In 1999, he joined Mayo Clinic as a founding member of the Molecular Medicine Department. To date, two viral vectors developed at Mayo Clinic are in clinical trials to treat ovarian cancer, glioma and myeloma.

Explore further: Warning coloration paved the way for louder, more complex calls in certain species of poisonous frogs

Related Stories

New research may help to design better gene therapy vectors

Oct 07, 2008

(PhysOrg.com) -- Research published by scientists from the University of Reading may offer an insight into ways of making safer and more specific gene therapy vectors. The research, published in the journal Nature Structural an ...

Penn researchers discover new mechanism for viral replication

Aug 16, 2007

Researchers at the University of Pennsylvania School of Medicine have identified a new strategy that Kaposi’s Sarcoma Associated Herpesvirus (KSHV) uses to dupe infected cells into replicating its viral genome. This allows ...

Scientists Reveal a Virus’ Secret Weapon

Jan 18, 2007

It takes more than just breaking and entering for a virus to successfully invade a cell. Getting to the cell’s center—where the host cell’s machinery will be co-opted to make more virus—requires navigating obstacles ...

Viral infection affects important cells' stress response

Nov 14, 2007

Viral infection disrupts the normal response of mammalian cells to outside deleterious forces, cleaving and inactivating a protein called G3BP that helps drive the formation of stress granules, which shelter the messenger ...

Recommended for you

Cat dentals fill you with dread?

Oct 24, 2014

A survey published this year found that over 50% of final year veterinary students in the UK do not feel confident either in discussing orodental problems with clients or in performing a detailed examination of the oral cavity ...

User comments : 0