Tiny laser light show illuminates quantum computing (w/ Video)

December 7, 2010

A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison.

Described in the journal , published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors used at rock concerts and planetariums. But it's much smaller, faster, atom-scale accurate and aimed at the future of computing, not entertainment.

In theory, quantum computers will be able to solve very complex and important problems if their basic elements, called qubits, remain in a special "quantum entangled" state for a long enough time for the calculations to be carried out before information is lost to natural fluctuations. One of several promising approaches to uses arrays of individual suspended by electromagnetic forces. Pulses of laser light manipulate the internal states of the atoms that represent the qubits, to carry out the calculation. However the lasers must also be focused and aimed so accurately that light meant for one atom doesn't affect its neighbors.

The video will load shortly
This movie shows laser beams being directed to a 5x5 array. The current paper uses only a 1x5 array, but with real atoms and quantum measurements of the internal rotations. Credit: American Institute of Physics

The new system did just that. Tiny micromirrors, each only twice the diameter of a human hair, pointed to each target atom in as little as 5 microseconds, which is about 1,000 times faster than sophisticated beam-steering mirrors developed for optical communications switching, not to mention the still slower units used in light shows. The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom – in this case a line of five rubidium-87 atoms -- without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.

"Our experiments demonstrated the crucial requirement that our micromirror system maintain the laser-beam quality necessary to manipulate the internal states of the individual atoms," said Jungsang Kim, leader of the Duke researchers who designed the micromirror system. The atomic physics experiments were performed in Mark Saffman's group at University of Wisconsin-Madison.

The groups plan to continue their collaboration, with future experiments targeting two-qubit gates, which are expected to be the basic building block of quantum logic, and atoms confined in larger two-dimensional arrays.

Explore further: Yale scientists bring quantum optics to a microchip

Related Stories

Yale scientists bring quantum optics to a microchip

September 8, 2004

A report in the journal Nature describes the first experiment in which a single photon is coherently coupled to a single superconducting qubit (quantum bit or "artificial atom"). This represents a new paradigm in which quantum ...

Basic quantum computing circuit built

February 25, 2010

(PhysOrg.com) -- Exerting delicate control over a pair of atoms within a mere seven-millionths-of-a-second window of opportunity, physicists at the University of Wisconsin-Madison created an atomic circuit that may help quantum ...

Trapping giant Rydberg atoms for faster quantum computers

May 6, 2010

In an achievement that could help enable fast quantum computers, University of Michigan physicists have built a better Rydberg atom trap. Rydberg atoms are highly excited, nearly-ionized giants that can be thousands of times ...

Recommended for you

Light-powered 3-D printer creates terahertz lens

April 29, 2016

From visible light to radio waves, most people are familiar with the different sections of the electromagnetic spectrum. But one wavelength is often forgotten, little understood, and, until recently, rarely studied. It's ...

A tiny switch for a few particles of light

April 29, 2016

The Jedi knights of the Star Wars saga are engaged in an impossible fight. This does not result from the superiority of the enemy empire, but from physics because laser swords cannot be used for fighting like metallic blades: ...

Physicists detect the enigmatic spin momentum of light

April 25, 2016

Ever since Kepler's observation in the 17th century that sunlight is one of the reasons that the tails of comets to always face away from the sun, it has been understood that light exerts pressure in the direction it propagates. ...

Superfast light source made from artificial atom

April 26, 2016

All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Branden520
4 / 5 (1) Dec 07, 2010
All I have to say is, Impressive.
hourifromparadise
not rated yet Dec 08, 2010
I hope that one day I don't have to read any more scientific news , in which on a frequent basis measurements are presented with the width of a human hair .
Please stop with this kind of imagination !!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.