Physicists use graphene to decode DNA

Dec 01, 2010
This is the cover of Physics World. Credit: Physics World

Genome sequencing will have a profound effect on our understanding of genetic biology and could usher in a day when doctor and patient are able to review individual genome sequences to fully personalise medical treatment.

As the begins to receive nominations for its $10m prize for the first privately funded company that can accurately sequence 100 genomes in 10 days for less than $10,000 per genome, the science writer Philip Ball looks at the latest advances towards success in December 's lead feature.

The baton, once firmly in the hands of chemists and biologists, has been grabbed by physicists around the world since the mid-1990s when David Deamer from the University of California, Santa Cruz imagined threading a through a tiny pore -- reading out the chemical bases strung along the strand as it passes through. His idea was that in a salt solution, the number of dissolved ions passing through the pore would vary depending on which base was sitting in the pore.

Over the past decade, scientists have sought means to use Deamer's technique with far greater control of the pore and the movement of DNA through the pore, while also contemplating how the technique can be turned into a handy device that could be used in doctors' surgeries worldwide.

Initial thoughts were towards the use of a silicon-nitride nanopore but researchers have found the material a little too thick, meaning that more than one nucleotide -- the structural units that make up DNA -- can be in the pore at any one time.

Now, however, graphene -- one-atom thick sheets of carbon that led to this year's Nobel Prize for Physics -- is generating huge excitement as a possible DNA sequencing material following the work of three independent research groups earlier this year.

The teams -- based at the universities of Delft, Pennsylvania and Harvard -- have each drawn DNA through a nanopore drilled into graphene. As the materials is so much thinner than , the teams are reported to believe that graphene may be a "game changer".

Whether for the physicists it's the lure of a $10m prize, the joy of basic research, or the satisfaction of designing a technique that could revolutionize medicine, it looks like graphene -- already dubbed a "wonder material on account it being ultrathin, ultrastrong and a great electrical conductor -- could be adding one more string to its already powerful bow.

Explore further: Breakthrough in flexible electronics enabled by inorganic-based laser lift-off

Related Stories

DNA through graphene nanopores

Jul 12, 2010

A team of researchers from Delft University of Technology (The Netherlands) announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In ...

Graphene may hold key to speeding up DNA sequencing

Sep 10, 2010

September 9, 2010 - In a paper published as the cover story of the September 9, 2010 Nature, researchers from Harvard University and MIT have demonstrated that graphene, a surprisingly robust planar sheet ...

Recommended for you

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.