Age doesn't matter: New genes are as essential as ancient ones

Dec 16, 2010

New genes that have evolved in species as little as one million years ago – a virtual blink in evolutionary history – can be just as essential for life as ancient genes, startling new research has discovered.

Evolutionary biologists have long proposed that the genes most important to life are ancient and conserved, handed down from species to species as the "bread and butter" of biology. New genes that arise as species split off from their ancestors were thought to serve less critical roles – the "vinegar" that adds flavor to the core genes.

But when nearly 200 new genes in the fruit fly species Drosophila melanogaster were individually silenced in laboratory experiments at the University of Chicago, more than 30 percent of the knockdowns were found to kill the fly. The study, published December 17 in Science, suggests that new genes are equally important for the successful development and survival of an organism as older genes.

"A new gene is as essential as any other gene; the importance of a gene is independent of its age," said Manyuan Long, PhD, Professor of Ecology & Evolution and senior author of the paper. "New genes are no longer just vinegar, they are now equally likely to be butter and bread. We were shocked."

The study used technology called RNA interference to permanently block the transcription of each targeted gene into its functional product from the beginning of a fly's life. Of the 195 young genes tested, 59 were lethal (30 percent), causing the fly to die during its development. When the same method was applied to a sample of older genes, a statistically similar figure was found: 86 of 245 genes (35 percent) were lethal when silenced.

Because the young genes tested only appeared between 1 and 35 million years ago, the data suggests that new genes with new functions can become an essential part of a species' biology much faster than previously thought. A new gene may become indispensable by forming interactions with older genes that control important functions, said Sidi Chen, University of Chicago graduate student and first author of the study.

"New genes come in and quickly interact with older genes, and if that interaction is favorable by helping the organism survive or reproduce better, it is favored by and stays in the genome," Chen said. "After a while, it becomes essential, and the organism literally cannot live without the gene any more. It's something like love: You fall in love with someone and then you cannot live without them."

The indispensable nature of new genes also questions long-held beliefs about the shared features of development across different species. In 1866, German zoologist Ernst Haeckel famously hypothesized that "ontogeny recapitulates phylogeny" after observing that the early steps of development are shared by animals as different as fly and man.

Biologists subsequently predicted and confirmed that the same ancient, essential genes would be the conductors of this early development in all species. This principle enabled the use of model organisms, including flies, mice, and rats, to be used for research on the mechanisms of human disease.

Intriguingly, in the new study, deleting many of the new genes causes flies to die during middle or late stages of development, while older genes were lethal during early development. So while ancient genes essential for the early steps of development are shared, newer genes unique to each species may take over the later developmental stages that make each species unique. For example, many new genes in the study were found to be involved with metamorphosis, the mid-life stage that drastically transforms the body plan in animals.

"This may change the way we view the developmental program," Long said. "Each species has a different species-specific developmental program shaped by natural selection, and we can no longer say that from Drosophila to humans the development of different organisms is just encoded by the same genetic program. The story is much more complicated than what we used to believe."

As such, a full understanding of biological diversity may require a new focus on genes unique to each organism.

"I think it has important implications on human health," Chen said. "Animal models have proven to be very useful and important for dissecting human disease. But if our intuition is correct, some important health information for humans will reside in the unique parts of the human genome."

The newfound importance of young genes and unique developmental programs may have a dramatic impact on the field, Long said. The discovery will also inspire new research directions examining how quickly new genes can become essential and their exact role in species-specific development.

"Biologists have long assumed, quite reasonably, that ancient genes have survived natural selection because they are essential to life and that new are generally less critical to an organism's development," said Irene Eckstrand, PhD, who manages Dr. Long's and other evolutionary biology grants at the National Institutes of Health. "This important study suggests that this assumption is flawed, unlocking new questions that could lead to a deeper understanding of evolutionary processes and their impact on human health."

Explore further: Japan's 'sacred' rice farms rotting from inside

More information: The study, "New genes in Drosophila quickly become essential," is published in the December 17 issue of Science. Chen, Long, and Yong Zhang of the University of Chicago are authors of the study.

Related Stories

Study: Junk DNA is critically important

Oct 19, 2005

A University of California-San Diego scientist says genetic material derisively called "junk" DNA is important to an organism's evolutionary survival.

Dogs, maybe not, but old genes can learn new tricks

May 11, 2009

A popular view among evolutionary biologists that fundamental genes do not acquire new functions was challenged this week by a new study in the Proceedings of the National Academy of Sciences.

Picky-eater Flies Losing Smell Genes

Apr 02, 2007

A UC Davis researcher is hot on the scent of some lost fruit fly genes. According to population biology graduate student Carolyn McBride, the specialist fruit fly Drosophila sechellia is losing genes for smell and taste receptors ...

Recommended for you

Studies steadily advance cellulosic ethanol prospects

1 hour ago

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

BloodSpill
not rated yet Dec 17, 2010
That's spaghetti code for you.
Raveon
not rated yet Dec 17, 2010
I don't know why this result is surprising. Every organism is the sum of its parts. It's like an airplane, start taking away pieces and not only does it cease to be a plane, it will quickly cease to function. And, like a plane, you can't just throw all the individual pieces together and get a functioning whole. Planes, like life, evolved from simpler less complex forms but are dependent on their current parts to function.
genastropsychicallst
1 / 5 (2) Dec 17, 2010
We never forget up lose any age of every old gen on some charm history knowing science nothing evolute future top discover bottom educater all species memory fiction. To be read at biopsychica by google Albert Marinus in already 27 countries.
Argon
1 / 5 (1) Dec 17, 2010
How can life forms come to be dependent, over time, on "new genes", which the research shows are essential to the life forms survival at the early developemental stages right now? It doesn't sound like "new genes" are building upon an earlier fundamental framework, but rather they are the fundamental framework.

For example, if 30% of the new genes are essential to life and 35% of the old genes are essential to life then together these new and old genes form the limiting factors of survivability of the fly from the moment of its conception, as evidenced by the fly dying at specific stages of development depending on which limiting gene was absent.

Therefore, it raises the question: How could the fly have obtained the life limiting new genes, over time, if the fly would first go extinct without having all of them from the start; if flies had the "new genes" from the start it would mean that flies have always been flies. This would be a clear upset to the evolutionary worldview.
Phideaux
not rated yet Dec 17, 2010
The parts of the plane rely on parts factories that didn't exist 200 years ago, also a developed petroleum industry, an electric grid, computers, modern communication systems and all that these components rely on. They all co-evolved from simpler to greater complexity without any "intelligent designer"
Raveon
not rated yet Dec 17, 2010
New species are emmergent organisms. We will never be able to pick a set of characteristics and mix the right genes to produce a tailor made organism, it's impossible and why there is no intelligent designer. There are probably more combinations of the components of our DNA than there are atoms in the universe and the vast majority are probably null. At best we will fumble with changing one or two genes at a time and hoping for the result we are looking for.