Marsupial embryo jumps ahead in development

Nov 29, 2010
Any embryonic short-tailed opossum finishes its development outside the womb. | Anna Keyte

(PhysOrg.com) -- Long a staple of nature documentaries, the somewhat bizarre development of a grub-like pink marsupial embryo outside the mother's womb is curious in another way.

Duke University researchers have found that the developmental program executed by the marsupial embryo runs in a different order than the program executed by virtually every other vertebrate animal.

"The limbs are at a different place in the entire timeline," said Anna Keyte, a postdoctoral biology researcher at Duke who did this work as part of her doctoral dissertation. "They begin development before almost any other structure in the body."

Biologists have been pursuing the notion that limb development is triggered by other organ systems coming on line first, but this study shows the marsupial's limbs begin development without such triggers.

"Development is probably more flexible than we might have known otherwise," said biology professor Kathleen Smith. Their study animals were gray short-tailed opossums (Monodelphis domestica) native to Brazil and Bolivia, but the same should hold true for any marsupial, Smith said.

For the undeveloped embryo to be able to drag itself across the mother's belly from the birth canal to the teat, it needs a formidable pair of forelimbs. To get them, its developmental program has been rearranged to start building the forelimbs much sooner.

"A lot of these genes were turned on earlier than you'd see in a mouse or a chick," Keyte said. The researchers were also able to show that the forelimbs received cells from a much larger part of the developing embryo than is normally seen in other . What surprised the researchers was that the to establish the hind limbs also appeared to be turned on early.

sets up the pattern of where each of the four limbs will be, but the marsupial's forelimbs grow much faster than the hind limbs because the embryo devotes more of its scarce number of early cells to building those structures, Smith said. The plans are in place for the hind limbs, but not the bricks to build them.

The embryo emerges from the mother with burly forearms that include bones and well developed muscles, while the hind limbs are small and rubbery.

Blind, hairless and with an incomplete brain, a marsupial embryo is shockingly underdeveloped to be living outside the womb. But the system obviously works for marsupials.

"There are probably 50 explanations for why marsupials develop outside the womb, and none of them are very good," Smith said. It's pretty clear however that the external gives the female a lot more control over her reproduction. If conditions change or she runs out of food, the marsupial mother can easily terminate an external pregnancy.

Explore further: Scientists target mess from Christmas tree needles

More information: "Developmental origins of precocial forelimbs in marsupial neonates," Anna L. Keyte and Kathleen K. Smith. Development 137, 4283-4294 (2010) doi:10.1242/dev.049445

Related Stories

3-legged dogs boost robot research

Jun 30, 2010

The new research looked at walking and running techniques in dogs with fore-limb or hind-limb amputations, using a treadmill and a set of high-tech infra-red cameras.

Britain expands embryo screening

May 11, 2006

Britain's fertility watchdog agency has approved expanded screening of embryos to include genetic links to ovarian, breast and colon cancers.

Recommended for you

Keep dogs and cats safe during winter

18 hours ago

(HealthDay)—Winter can be tough on dogs and cats, but there are a number of safe and effective ways you can help them get through the cold season, an expert says.

Scientists target mess from Christmas tree needles

Dec 26, 2014

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

The ants that conquered the world

Dec 24, 2014

About one tenth of the world's ants are close relatives; they all belong to just one genus out of 323, called Pheidole. "If you go into any tropical forest and take a stroll, you will step on one of these ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jtdrexel
not rated yet Nov 30, 2010
Looks like a gummy bear!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.