Great potential with new ultra-clean nanowires

Nov 09, 2010
Ultra-clean gallium-arsenid nanowires grown on a silicon substrate gives hope of developing cheep and very effective solar cells.

New ultra-clean nanowires produced at the Nano-Science Center, University of Copenhagen will have a central role in the development of new high-efficiency solar cells and electronics on a nanometer scale. PhD student Peter Krogstrup, Niels Bohr Institute, in collaboration with a number of well-known researchers and the company SunFlake A/S, is behind the breakthrough. The new findings have recently been published in the prestigious journal NanoLetters.

Nanowires are one-dimensional structures with unique electrical and – a kind of building blocks, which researchers use to create nanoscale devices.

In recent years, there has been a great deal of research into how can be used as building blocks in the development of . One of the challenges is controlling the production of nanowires. The new ultra-clean nanowires are part of the solution. They are grown without the use of a metal catalysis like gold, which has a tendency to destroy the otherwise perfect electron structure the nanowires possess, thereby making them less useful.

"The ultra-clean wires are grown on a silicon substrate with an extremely thin layer of natural oxide. The element Gallium, which is a part of the nanowire material, reacts with the oxide and makes small holes in the oxide layer, and here the gallium collects into small droplets of a few nanometers in thickness. These droplets capture the element Arsenic – the other material in the nanowire and through a self-catalytic effect starts the growth of the nanowires without interference from other substances", explains Peter Krogstrup. The breakthrough is the result of a year’s work in connection with his PhD.

Control over the cultivation of nanowires

Numerous experiments with different growing conditions have made the researchers wiser to physics behind the formation of the nanowires. A nanowire normally consists of both hexagonal and cubic crystal segments, but the new nanowires only consist of a perfect cubic crystal structure. This means that the path of the electrons through the wire is unaffected and thus suffers less energy loss which leads to a higher efficiency.

"This better understanding of the growing process gives us control over the cultivation of nanowires and the clean wires are the starting point for my current work developing a high efficiency solar cell based on nanowires. With these results we are a good step closer to this goal", explains Peter Krogstrup, pointing out that his nanowires are grown on a silicon substrate.

"The substrate is cheaper than the alternative substrates that many other researchers use. It is important because ultimately it is about getting as much energy as possible for as little cost as possible", explains Peter Krogstrup, whose research is conducted in collaboration with the company SunFlake A/S, which is located at the Nano-Science Center at the University of Copenhagen. The company is working to develop the of the future based on the nanostructures of Gallium and Arsenic.

"We are very pleased that Peter has delivered such good results so early in the research project", says the CEO of SunFlake A/S Morten Schaldemose.

Explore further: Imaging electric charge propagating along microbial nanowires

More information: Article in NanoLetters

Provided by University of Copenhagen

5 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Danish nanowires have great potential

Nov 02, 2009

Danish nanophysicists have developed a new method for manufacturing the cornerstone of nanotechnology research - nanowires. The discovery has great potential for the development of nanoelectronics and highly ...

Chemists measure copper levels in zinc oxide nanowires

Feb 19, 2008

Chemists at the National Institute of Standards and Technology have been the first to measure significant amounts of copper incorporated into zinc oxide (ZnO) nanowires during fabrication. The issue is important ...

Recommended for you

Energy storage of the future

Oct 20, 2014

Personal electronics such as cell phones and laptops could get a boost from some of the lightest materials in the world.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

JamesThomas
not rated yet Nov 09, 2010
There are hundreds of research labs racing to develop the solar panels of the future which will be built from the nano level and be super efficient and affordable -- likewise with energy storage devices.
In as little as two to three years we will no longer be concerned about energy as affordable, super efficient solar panels with storage mechanisms to match, become available. It's very exciting to watch.