Cone of poison: The secret behind the cone snail's venom pump

October 27, 2010

Scientists have discovered the secret of how an amazing sea snail injects its venom after shooting a harpoon-like tooth into its prey -- or some unlucky swimmer -- at jetliner speeds. The creatures, called cone snails, use a highly specialized structure that instantly pumps the paralyzing venom through the tooth and into its target. Their study appears in ACS' monthly Journal of Proteome Research.

Helena Safavi-Hemami, Anthony Purcell and colleagues note that cone snails live mainly in the shallows of the world's tropical oceans. Prized by sea-shell collectors for their beautiful shells, the snails are up to 9 inches long. Their mouths have a blow-gun-like structure that shoots a barbed dart-like "tooth" at about 400 miles per hour. The tooth injects venom into fish, worms, or other prey.

The snails occasionally sting swimmers, causing pain and sometimes death. They can reload the shooter with additional harpoons. The venom is produced in the venom duct, a long tube attached to the harpoon on one end and to the venom bulb in the snail's mouth.

The scientists' analysis of proteins in venom bulbs found high concentrations of arginine kinase, a protein that enables squid and scallops to swim away from danger with extreme speed. Its abundance in the bulb suggests that arginine kinase enables the venom bulb to undergo rapid, repeated contractions to quickly force the venom through the venom duct to the harpoon and into the prey, the scientists say. The scientists also identified specialized muscles in the bulb that appear to aid in this process.

Explore further: Here's venom in your eye: Spitting cobras hit their mark

More information: "Proteomic interrogation of venom delivery in marine cone snails – Novel insights into the role of the venom bulb", Journal of Proteome Research.

Related Stories

Here's venom in your eye: Spitting cobras hit their mark

January 22, 2009

Spitting cobras have an exceptional ability to spray venom into eyes of potential attackers. A new study published in Physiological and Biochemical Zoology reveals how these snakes maximize their chances of hitting the target.

Snail venoms reflect reduced competition

May 20, 2009

A study of venomous snails on remote Pacific islands reveals genetic underpinnings of an ecological phenomenon that has fascinated scientists since Darwin.

Genetic analysis reveals secrets of scorpion venom

July 1, 2009

Transcriptomic tests have uncovered the protein composition of venom from the Scorpiops jendeki scorpion. Researchers writing in the open access journal BMC Genomics have carried out the first ever venom analysis in this ...

Scientists tap into Antarctic octopus venom

July 21, 2010

( -- Researchers have collected venom from octopuses in Antarctica for the first time, significantly advancing our understanding of the properties of venom as a potential resource for drug-development.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.