Bacteria gauge cold with molecular measuring stick

Oct 19, 2010

Some bacteria react to the cold by subtly changing the chemistry of their outer wall so that it remains pliable as temperatures drop. Scientists identified a key protein in this response mechanism a few years ago, but the question of how bacteria sense cold in the first place remained a mystery. Based on a study by scientists at Rice University and Argentina's National University of Rosario, the answer is: They use a measuring stick.

The study, published in the September issue of , involved a series of intricate experiments on the . The researchers found a specialized protein that protrudes through the bacteria's outer cell wall acts as a measuring stick that's tuned to give a signal when temperatures outside the cell drop.

Scientists have long known that cells use specialized proteins called "transmembrane" proteins to sense and react to the outside world. Transmembrane proteins protrude through the cell's outer wall, or membrane.

"All living cells have the ability to respond to external stimuli, but in most cases that we are aware of, signal recognition -- the event that triggers the response -- occurs when a transmembrane protein binds physically to another chemical outside the cell," said study co-author Ariel Fernandez, research professor at Rice.

Fernandez said the Bacillus subtilis study is one of the first to determine how a transmembrane protein can respond indirectly to a physical stimulus outside the cell. The research was highlighted in review articles in both Current Biology and Nature Reviews .

He and colleagues examined a transmembrane protein called DesK (pronounced des-KAY). In previous studies, scientists had found that DesK responded to cold temperatures by causing the cell to make a special compound that keeps the membrane pliable. Without the compound, the inside the cell wall become more rigid as temperatures fall.

Fernandez and colleagues found that the part of the DesK that protrudes outside the cell contains a sensitized tip. As long as the tip remains in contact with water molecules outside the cell, DesK remains switched off. As temperatures fall and the cell membrane becomes more rigid, the membrane also becomes thicker. As it thickens, it engulfs the sensitized end of the temperature probe, cutting off contact with water molecules outside the cell. This, in turn, activates DesK and sends the signal to release the cold-protecting chemicals. This mechanism, which Fernandez named the buried buoy trigger, was proposed by Fernandez and probed experimentally by the Argentinean team.

The molecular biology and experimental probes were conducted in the laboratory of Diego de Mendoza at the National University of Rosario in Rosario, Argentina. To confirm the findings, the group constructed versions of DesK proteins of varying lengths. Using these as longer or shorter measuring sticks, the researchers confirmed that the signaling mechanism was triggered based upon whether the tip of the transmembrane sensor remained in contact with outside the membrane.

Explore further: Researchers capture picture of microRNA in action

Related Stories

Biologists search for 'half-fusion'

May 16, 2005

Every living cell is surrounded by a membrane, a thin barrier that separates the genetic machinery of life from the non-living world outside. Though barriers, membranes are not impervious. Cells use a complex hierarchy of ...

'Wrapping' Gleevec fights drug-resistant cancer

May 01, 2007

A new study highlighted on the cover of this week's issue of Cancer Research finds that the anti-cancer drug Gleevec® is far more effective against a drug-resistant strain of cancer when the drug wraps the target with a ...

Recommended for you

Researchers capture picture of microRNA in action

18 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

20 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

23 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

23 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.