Targeting amyloid to stop HIV

September 28, 2010
Electron micrograph of a SEVI amyloid structure

( -- Amyloid protein structures are best known for the troubles they pose in the brains of Alzheimer's patients. Now researchers are trying to exploit their presence in a very different place - in semen - to find a new way to stop HIV.

Scientists have created a substance that targets amyloid structures in semen and have used it to weaken the ability of to infect the body’s immune cells in the laboratory. The experimental compound, originally designed to help Alzheimer’s patients by disrupting the actions of amyloid in the brain, make it much more likely that HIV particles will simply slide past human immune cells instead of gaining a foothold for infection during

The work by scientists at the University of Rochester Medical Center, in collaboration with chemists at the University of California at San Diego, offers a new lead in the effort to develop a to prevent from one person to another. The findings were published online recently in the Journal of Biological Chemistry.

The focus of the work is an amyloid structure that was discovered in semen three years ago by German researchers. The structure, known as SEVI for Semen-derived Enhancer of Viral Infection, enhances infection by sticking both to HIV particles and to the immune cells that HIV infects. It’s a middle man in the infection process - one that researchers believe is a powerful driver of HIV’s ability to infect a person during heterosexual intercourse. SEVI has offered a new target to researchers trying to stop the virus.

“HIV viral particles are tiny and adrift amid a sea of semen and cervical mucus during sexual intercourse,” said Stephen Dewhurst, Ph.D., the microbiologist who heads the team. “The virus must sink quickly in this fluid to have the opportunity to contact the cells that it infects.That’s what SEVI allows it to do - to literally stick around.”

So Dewhurst teamed with Jerry Yang, Ph.D., a chemist at UCSD who previously created a compound designed to minimize the harmful interactions of amyloid with other proteins and lipids in the brain. Yang created a molecule called BTA-EG6 which fits in between the individual small proteins that cluster to form SEVI and blocks SEVI’s interactions with both the virus and the target . One key to the chemistry is the compound ethylene glycol - the central component of anti-freeze - which makes it particularly difficult for SEVI to stick to the virus or to cells.

“The compound drives a wedge between SEVI and both HIV particles and human cells, making it difficult for SEVI to interact with either. It’s like surrounding SEVI with air bags so it can’t bring HIV and the body’s cells together,” said Dewhurst. “Jerry Yang is the one who came up with this, and it’s ingenious.”

In experiments led by first author Joanna Touger Olsen, an M.D./Ph.D. student in the Dewhurst laboratory, the presence of SEVI boosted the ability of HIV to infect cells dramatically, roughly three to six times what it was without SEVI. When the non-stick compound was added, that advantage was muted, and rates of infection dropped nearly to levels when SEVI was absent. The investigators say the results must be interpreted cautiously, though, as the influence of factors such as the strain of HIV and the human cell line used in the study need to be looked at further.

“Other scientists have tried to lower the rate of HIV infection by targeting the virus or the cells it infects,” said Yang. “What we do is target the mediator between the virus and the cells. By neutralizing SEVI, we prevent at least one way for HIV to attach to the cells.”

The findings come on the heels of work announced by other researchers this summer about a microbicide based on the anti-retroviral agent tenofovir. That compound, when applied by women before and after sex, reduced their risk of contracting HIV by 39 percent.

“Recent studies have shown for the first time that a topical microbicide gel can protect women from HIV-1 infection,” said Dewhurst. “This is a huge step forward but not a perfect solution. We need to figure out ways to further improve protection - and our studies suggest one way of doing so. It may be possible to produce a next-generation microbicide that includes both an antiviral agent, as has been used in the past, and an agent that targets SEVI. We’re very excited about exploring this idea.”

Yang’s molecule offers an advantage over most microbicides under study: It doesn’t cause inflammation in cervical cells. That’s a particular advantage because the cells that drive such inflammation are among precisely the cells that HIV infects.

Explore further: Human testis harbors HIV-1 in resident immune cells

Related Stories

Human testis harbors HIV-1 in resident immune cells

November 27, 2006

Researchers have demonstrated HIV replication within resident immune cells of the testis, providing an explanation for the persistence of virus in semen even after effective highly active antiretroviral therapy. The related ...

Exhausted B cells fail to fight HIV

July 14, 2008

HIV tires out the cells that produce virus-fighting proteins known as antibodies, according to a human study that will be published online July 14 in the Journal of Experimental Medicine.

An atomic-level look at an HIV accomplice

November 19, 2009

( -- Since the discovery in 2007 that a component of human semen called SEVI boosts infectivity of the virus that causes AIDS, researchers have been trying to learn more about SEVI and how it works, in hopes of ...

Scientists identify target that may inhibit HIV infectivity

January 4, 2010

Scientists at the Gladstone Institute of Virology and Immunology (GIVI) have discovered a new agent that might inhibit the infectivity of HIV. The agent, surfen, impairs the action of a factor in semen that greatly enhances ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.