Stretching single molecules allows precision studies of interacting electrons

June 10, 2010 By Anne Ju
A scanning electron micrograph of a gold bridge suspended 40 nanometers above a silicon substrate. In the experiment, the bridge is severed in the middle, a single molecule is suspended across the gap, and the substrate is bent to stretch the molecule while simultaneously measuring the electron current through the molecule. Image: J.J. Parks

(PhysOrg.com) -- With controlled stretching of molecules, Cornell researchers have demonstrated that single-molecule devices can serve as powerful new tools for fundamental science experiments. Their work has resulted in detailed tests of long-existing theories on how electrons interact at the nanoscale.

The work, led by professor of physics Dan Ralph, is published in the June 10 online edition of the journal Science. First author is J.J. Parks, a former graduate student in Ralph's lab.

The scientists studied particular cobalt-based molecules with so-called intrinsic - a quantized amount of angular momentum.

Theories first postulated in the 1980s predicted that molecular spin would alter the interaction between electrons in the molecule and conduction electrons surrounding it, and that this interaction would determine how easily electrons flow through the molecule. Before now, these theories had not been tested in detail because of the difficulties involved in making devices with controlled spins.

Understanding single-molecule electronics requires expertise in both chemistry and physics, and Cornell's team has specialists in both.

"People know about high-spin molecules, but no one has been able to bring together the chemistry and physics to make controlled contact with these high-spin molecules," Ralph said.

Schematic of the mechanically controllable device used for stretching individual molecules while simultaneously measuring the electron current through the molecule. Credit: Joshua Parks, Cornell University

The researchers made their observations by stretching individual spin-containing molecules between two and analyzing their electrical properties. They watched flow through the cobalt complex, cooled to extremely low temperatures, while slowly pulling on the ends to stretch it. At a particular point, it became more difficult to pass current through the molecule. The researchers had subtly changed the of the molecule by making it less symmetric.

After releasing the tension, the molecule returned to its original shape and began passing current more easily - thus showing the molecule had not been harmed. Measurements as a function of temperature, magnetic field and the extent of stretching gave the team new insights into exactly what is the influence of molecular spin on the electron interactions and electron flow.

The effects of high spin on the of devices were entirely theoretical issues before the Cornell work, Ralph said. By making devices containing individual high-spin and using stretching to control the spin, the Cornell team proved that such devices can serve as a powerful laboratory for addressing these fundamental scientific questions.

Explore further: Detecting the spin of a single electron in a standard silicon transistor

Related Stories

IBM scientists demonstrate single-atom magnetic measurements

September 9, 2004

IBM scientists have measured a fundamental magnetic property of a single atom -- the energy required to flip its magnetic orientation. This is the first result by a promising new technique they developed to study the properties ...

Spin-polarized electrons on demand

January 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

January 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin polarization achieved in room temperature silicon

November 27, 2009

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, and the achievement ...

Physicists capture first images of atomic spin

April 26, 2010

(PhysOrg.com) -- Though scientists argue that the emerging technology of spintronics may trump conventional electronics for building the next generation of faster, smaller, more efficient computers and high-tech devices, ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.