Cornell researchers reveal structure of key protein

April 21, 2010
Crystal structure of the yeast Sac1 protein, left, and rotated 90 degrees, right.

(PhysOrg.com) -- For the first time, researchers -- all Cornell scientists -- have characterized the structure of a protein that belongs to certain enzymes that are essential for proper functioning in all life forms, from yeast to humans.

The enzymes, belonging to the so-called Sac family, are involved in cellular signaling and membrane trafficking. Scientists have found that when the gene that expresses Sac enzymes is deleted in animals, the animals die, and mutations of related genes in humans lead to cancers and such neurodegenerative hereditary diseases as Charcot-Marie-Tooth Type 4J (CMT4J) and Lou Gehrig's disease.

Researchers from Cornell's Weill Institute of Cell and Molecular Biology, reporting online in the Journal of the European Molecular Biology Organization, have characterized for the first time the of the Sac1 protein in yeast. Yeast serves as a for all cells; most of the 6,000 genes in yeast are also found in humans. The Sac1 protein in yeast is a progenitor for related Sac proteins also found in plants and animals.

Understanding the Sac1 protein's structure opens the way for experiments that may reveal how these fundamental enzymes interact with cell membranes to enable essential cellular processes, which could also lead to drugs that target related diseases.

"This was first discovered in 1989, but no one had seen the atomic structure of this protein," said Yuxin Mao, an assistant professor of molecular biology and genetics and the paper's senior author. Andrew Manford, a graduate student in the lab of Scott Emr, director of the Weill Institute, is the paper's lead author. "Others have tried, but this is the first time" the protein's structure has been revealed, said Mao.

Much like an on and off switch, pathways that signal cells to divide, migrate or transport materials in and out of the cell are often activated by attaching a phosphate group to proteins or lipids (a process called phosphorylation) and similarly deactivated by the removal of the phosphate group. A class of enzymes called phosphatases mediates the removal of phosphates, and the Sac family of enzymes the Cornell researchers studied are lipid phosphatases. Such diseases as CMT4J and Lou Gehrig's disease occur when Sac family phosphatases fail to function properly, leading to a buildup of a group of phosphorylated lipids.

Mao and colleagues determined the structure by growing Sac protein crystals, which allowed researchers to view a protein's atomic structure through X-ray diffraction. Mao's lab used Cornell's synchrotron to solve the crystal structure of the Sac1 protein at an atomic resolution of less than 2 angstroms (two ten-millionths of a millimeter).

"This opens up biochemical studies of how these enzymes function -- it's a breakthrough in this direction of study," said Mao. "And it helps our studies of other members of the Sac family."

Explore further: Study reveals the regulatory mechanism of key enzyme

Related Stories

Study reveals the regulatory mechanism of key enzyme

September 20, 2007

Research conducted at the University of California, San Diego (UCSD) School of Medicine has shed new light on the structure and function of one of the key proteins in all mammalian cells, protein kinase A (PKA), an enzyme ...

How protein receptors on cells switch on and off

January 16, 2009

Cornell researchers have provided new insight into the molecular mechanism underlying an essential cellular system. They have discovered how receptors on cell surfaces turn off signals from the cell's environment, a function ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.