Looking for the heartbeat of cellular networks

December 16, 2009

Our cells' molecules form an intricate network of interactions. Today's techniques, however, can only be used to measure individual molecular reactions outside the cells. Since molecular concentrations are much higher in cells than in the laboratory, scientists suspect that the kinetics of molecular reactions in living cells differ substantially from external probes.

"We expected the cellular reaction speed to be higher," confirms LMU biophysicist Professor Dieter Braun. "However, our novel optical approach showed that - depending on the length of the strands - the coupling of DNA-strands inside living cells can be both faster and slower than outside." Data yielded from living cells are highly valuable for the development of models to understand the complex interactions as well as pathological processes in biological cells. Braun and his team now plan to probe a variety of molecular reactions in living cells, visualizing the heartbeat of . (PNAS online, 14 November 2009)

In their work, the scientists investigated the hybridization - the coupling and de-coupling - of two DNA-strands, which they introduced into living cells. To determine the reaction time constant they used an to induce temperature oscillations of different frequencies in the cell and measured the concentration of the reaction partners, namely of coupled and de-coupled DNA. At low frequencies, these concentrations followed the temperature oscillations, whereas at higher frequencies they experienced a phase delay and oscillated with diminished amplitude. Both delay time and amplitude decrease, were evaluated to obtain the reaction time constant.

The team determined the concentrations using the so-called fluorescent energy transfer (FRET), which takes place between two chromophores at a certain spatial distance. They applied a FRET pair to the DNA-strands such that occurred only if the strands were coupled. The chromophores were excited with a stroboscopic lamp and a CCD camera registered time and amplitude of the fluorescence, thus visualizing the concentration alterations with a spatial resolution of about 500 nanometres. The experiments revealed that DNA-strands comprising 16 units, the so-called bases, showed a sevenfold higher reaction speed compared to values determined outside living cells.

12-base DNA-strands, on the other hand, reacted times five times slower than outside cells. This is a surprising result, since kinetics of molecular reactions has been assumed to be always faster inside cells, where much higher molecular concentrations prevail. "Apparently cells modulate the reaction speed in a highly selective way," says Braun. "The measurements provide valuable insight into in vivo kinetic data for the systematic analysis of the complexity of biological cells," adds Ingmar Schön, who conducted the demanding experiments. The scientists are now planning to probe a wide variety of molecular reactions in , visualizing the heartbeat of cellular networks.

Explore further: Structure relevant to cell growth

More information: "Hybridization Kinetics is Different Inside Cells," Ingmar Schoen, Hubert Krammer, Dieter Braun, PNAS online, 14 November 2009

Related Stories

Structure relevant to cell growth

October 22, 2005

Utah researchers found a special type of molecular structure that helps keep genes properly turned off until the structure is ejected.

Study: Cells prevent DNA repair

November 23, 2005

Scientists say they've discovered cells co-opt the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes.

Models begin to unravel how single DNA strands combine

October 5, 2009

(PhysOrg.com) -- Using computer simulations, a team of University of Wisconsin-Madison researchers has identified some of the pathways through which single complementary strands of DNA interact and combine to form the double ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(Phys.org)—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.