Look ma, no mercury in fillings!

November 9, 2009

Tooth enamel is hardest material in the human body because it's made almost entirely of minerals. As tough as it may be, however, enamel can be broken down by bacteria, forming cavities and eventually destroying the tooth. That's why dentists repair cavities by filling them with a material to replace the lost enamel. The most common such restorative is a material invented in the 19th-century known as amalgam -- the classic silver-black fillings many people have.

Amalgam works well because it is very durable, easy to use, and cheap. The dark fillings are sometimes unsightly, however, and they contain mercury. Because of the mercury, amalgam has raised health and environmental questions -- though according to the American Dental Association, the scientific consensus is that the material poses no health hazards. Dentists would love to have a perfectly white material that mimics natural enamel for repairing cavities in teeth, but for the most part, they still use amalgam. Other filling have been developed in recent years, but they often have problems with shrinkage or durability.

Kent Coulter and his colleagues at Southwest Research Institute in San Antonio have developed a new proof-of-concept dental restorative material under a program funded by the National Institutes of Health that seeks to replace amalgam with other materials. They will describe the material on November 9 at a meeting of the scientific society AVS in San Jose. The new fillings are made with a plastic-like material containing zirconia nanoplatelets -- tiny crystals made of the same sort of material used to make fake diamonds and gem stones. Unlike their costume jewelry cousins, the zirconia nanoplatelets super hard because of a difference in the particular arrangements of the atoms in the material.

Coulter and his colleagues designed a way to make a roll of this material under vacuum. They envision that this material would be lifted from the roll and packed in a dental and then cured -- using an ultraviolet lamp or some other means -- so that it hardens in place without shrinking. In San Jose, they will describe how they have been developing and testing the performance of these materials in the laboratory. Its use is still several years away from the dentist's chair, however, and the next steps will be first to see if the new material performs as hoped for people with cavities.

Source: American Institute of Physics

Explore further: Amalgam fillings don't affect children's brain development, says study

Related Stories

Dental fillings without gaps

September 5, 2008

Tooth cavities are usually closed with plastic fillings. However, the initially soft plastic shrinks as it hardens. The tension can cause gaps to appear between the tooth and the filling, encouraging more caries to form. ...

Genetic discovery could lead to advances in dental treatment

February 23, 2009

Researchers have identified the gene that ultimately controls the production of tooth enamel, a significant advance that could some day lead to the repair of damaged enamel, a new concept in cavity prevention, and restoration ...

FDA concludes mercury in dental fillings not risky

July 28, 2009

(AP) -- The government declared Tuesday that silver dental fillings contain too little mercury to harm the millions who've had cavities filled with them - including young children - and that only people allergic to mercury ...

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(Phys.org)—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.