Chemist Develops High-Speed Test to Improve Pathogen Decontamination

October 19, 2009
Chemist Adrian Ponce has devised a new method to quickly validate - from days to minutes - a spacecraft's cleanliness. This sample holder (left) shows samples glowing under ultraviolet light. Image credit: NASA/JPL

( -- A chemist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., has developed a technology intended to rapidly assess any presence of microbial life on spacecraft. This new method may also help the military test for disease-causing bacteria, such as a causative agent for anthrax, and may also be useful in the medical, pharmaceutical and other fields.

Adrian Ponce, the deputy manager for JPL's planetary science section, devised the new microscope-based method, which has the potential to quickly validate -- from days to minutes -- a spacecraft's cleanliness.

NASA adheres to international protocols by striving to ensure that spacecraft don't harbor life from Earth that could contaminate other planets or moons and skew science research. Microbes known as bacterial endospores can withstand extreme temperatures, ultraviolet rays and chemical treatments, and have been known to survive in space for six years. This resilience makes them important indicators for cleanliness and biodefense, Ponce said.

"Bacterial endospores are the toughest form of life on Earth," Ponce explained. "Therefore, if one can show that all spores are killed, then less-resistant, disease-causing organisms will also be dead."

The new technology works by looking for dipicolinic acid -- a major component of endospores and evidence of endospore growth -- by first applying terbium to a dime-sized area. Terbium is a chemical element used to generate the color green on television screens. That area is then illuminated under an ultraviolet lamp. Within minutes, one can see through a microscope aided by a digital camera whether live endospores are present. That's because they will literally glow: The terbium will show the endospores as bright green spots.

Ponce co-authored a paper on the new technology, called Germinable Endospore Biodosimetry, along with Pun To Young, a post-doctoral student at the California Institute of Technology in Pasadena, in the journal Applied and Environmental Microbiology. The research was also highlighted in Microbe, a magazine of the American Society for Microbiology.

The technology has piqued the interest of the U.S. Department of Homeland Security. The federal agency is funding development of a portable instrument based on Ponce's research that could quickly check for decontamination of pathogens after a biological attack. Ponce is working with the Department of Homeland Security and Advance Space Monitor, a company based in Falls River, Mass., to develop the instrument, which they plan to have ready for use by 2011. JPL and Caltech licensed the technology to Advance Space Monitor.

"As part of the Department of Homeland Security Science and Technology Directorate's near-term bioassays effort, the technology could enable the rapid assessment of facility sterilization. This could significantly reduce the time and cost of building restoration following a bio-contamination event," said James Anthony, chemical and biological research and development program manager at the Dept. of . A bioassay is an assessment of whether certain biological material is present on a surface being tested.

Anthony added that the technology could also be used in bio-containment facilities that have regularly scheduled decontamination requirements and rapidly reactivate important bio-defense research facilities.

Besides outer space and defense purposes, this new technology might also be applied in hospitals, child-care centers, dentists' offices and nursing homes.

"Given all the problems with hospital-acquired infections, assessing the sterility and hygiene of medical equipment and surfaces is becoming increasingly important," said Ponce.

Provided by JPL/ (news : web)

Explore further: NASA signs homeland security agreement

Related Stories

NASA signs homeland security agreement

December 15, 2005

NASA and Homeland Security officials have signed a memorandum of understanding to collaborate and coordinate research and development projects.

Researchers pave the way for anthrax spore standards

April 15, 2008

Researchers from the National Institute of Standards and Technology (NIST) and the U.S. Army Dugway (Utah) Proving Ground have developed reliable methods based on DNA analysis to assess the concentration and viability of ...

Next Generation Counterterrorism and Military Wipe Developed

December 8, 2008

( -- A newly-developed decontamination wipe designed by researchers at The Institute of Environmental and Human Health (TIEHH) at Texas Tech University has proven itself the best for cleaning up chemical warfare ...

Spit, anyone?

April 14, 2009

Mark Nicas has given some of his best years to spittle. He builds models - the mathematical kind - of how someone else's slobber ends up on you. The size of the particles, whether they come out in a dry cough or a wet sneeze, ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.