Brookhaven Lab Patents New Method for Mercury Remediation

September 15, 2009
Brookhaven Labs John Heiser (left) and Paul Kalb, who hold the in situ mercury remediation patent with Mark Fuhrmann, formerly of Brookhaven, check the functioning of the new technology in the laboratory.

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have patented a new method to remove toxic mercury from soil, sediment, sludge and other industrial waste. As described in recently awarded U.S. patent number 7,589,248 and application U.S. Publication No. 20080097138, the method allows mercury to be treated in situ - at its original location in the ground.

Brookhaven Science Associates, the company that manages and operates Brookhaven Lab for DOE, holds the patent for the mercury-removal technology invented by Brookhaven researchers Paul Kalb and John Heiser, and Mark Fuhrmann, formerly of Brookhaven.

“When contaminates a large area, it is too expensive to scoop up and transport for remediation,” said Kalb, the principal investigator on the project. “This new method that we are now scaling up can remove mercury without excavating and replacing large volumes of toxic soil or other waste material, reducing both cost and environmental impact.”

The U.S. requires that mercury-contaminated waste be treated to either remove or stabilize the toxic metal and prevent it from leaching into soil or groundwater. In cases where large areas are contaminated with levels of mercury that are not extremely high, current mercury-extraction methods are expensive and impractical for removing mercury. In contrast, the new Brookhaven process, called “In Situ Mercury Stabilization” (ISMS), can treat and remove mercury contamination from the ground in a cost-effective manner.

In the new process, mercury is drawn to specially designed treatment rods that contain a sulfur-based reagent. When a series of rods is placed in the mercury-contaminated soil or other waste material, the mercury migrates to the rods and reacts with the sulfur reagent to form a mercury sulfide compound. The rod, which contains the stable, insoluble compound, can then be removed for safe disposal at a hazardous waste facility without having to dig up large volumes of soil or waste material.

“Using x-ray fluorescence, we initially tested samples of mercury-contaminated sand in an area about three inches in diameter before and after exposure to the treatment rod,” Kalb said. “After 50 days, the mercury concentration in the sand was 42 times lower than at the start of the test,” Kalb said. “We are now in the process of scaling up our tests to cover an area that is ten times bigger. We believe we can eventually develop the technology so that one rod may be able to remediate a very large area of mercury contamination.”

Brookhaven Lab’s Technology Maturation Program and DOE’s Office of Science and Technology, as well as its Office of Engineering and Technology and Office of Biological and Environmental Research, funded the development of the ISMS method.

Provided by Brookhaven National Laboratory (news : web)

Explore further: Scientists Develop Method to Remove Uranium from Contaminated Steel Surfaces

Related Stories

Study: Mercury can travel long distances

December 12, 2005

University of Washington scientists say they may have determined why mercury in the atmosphere might be washed out more easily than earlier believed.

U.N. seeks global pact to curb mercury

November 13, 2007

Worldwide government leaders meeting in Bangkok have been asked to step up efforts to develop an international agreement curbing mercury.

Dental chair a possible source of neurotoxic mercury waste

March 26, 2008

Mercury is a large component of dental fillings, but it is not believed to pose immediate health risks in that form. When exposed to sulfate-reducing bacteria, however, mercury undergoes a chemical change and becomes methylated, ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.