Scrubbing sulfur: New process removes sulfur components, CO2 from power plant emissions (w/ Video)

Aug 18, 2009
Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull more than just carbon dioxide out of power plant emissions. Credit: DOE/Pacific Northwest National Laboratory

The Department of Energy's Pacific Northwest National Laboratory has developed a reusable organic liquid that can pull harmful gases such as carbon dioxide or sulfur dioxide out of industrial emissions from power plants. The process could directly replace current methods and allow power plants to capture double the amount of harmful gases in a way that uses no water, less energy and saves money.

This video is not supported by your browser at this time.
Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull more than just carbon dioxide out of power plant emissions. Credit: Pacific Northwest National Laboratory

"Power plants could easily retrofit to use our process as a direct replacement for existing technology," said David Heldebrant, PNNL's lead research scientist for the project.

Harmful gases such as carbon dioxide or sulfur dioxide are called "acid gases". The new scrubbing process uses acid gas-binding organic liquids that contain no water and appear similar to oily compounds. These liquids capture the acid gases near . Scientists then heat the liquid to recover and dispose of the acid gases properly.

These recyclable liquids require much less energy to heat but can hold two times more harmful gases by weight than the current leading liquid absorbent used in power plants. It is a combination of water and monoethanolamine, a basic organic molecule that grabs the carbon dioxide.

PNNL's previous work with the all-organic liquids focused on pulling only carbon dioxide out of emissions from power plants. New work will show how the process can be applied to other acid gases such as sulfur dioxide.

"Current methods used to capture and release carbon dioxide emissions from use a lot of energy because they pump and heat an excess of water during the process," said Heldebrant. He notes the monoethanolamine component is too corrosive to be used without the excess water.

In PNNL's process called "Reversible Acid Gas Capture," the molecules that grab onto the acid gases are already in liquid form, and don't contain water. The acid gas-binding organic liquids require less heat than water does to release the captured gases.

Heldebrant and colleagues demonstrated the process in previous work with a carbon dioxide-binding organic liquid, called CO2BOL. In this process, scientists mix the CO2BOL solution into a holding tank with emissions that contain carbon dioxide. The CO2BOL chemically binds with the carbon dioxide to form a liquid salt solution.

In another tank, scientists reheat the salt solution to strip out the . Non-hazardous gases such as nitrogen would not be captured and are released back into the atmosphere. The toxic compounds are captured separately for storage. At that point, the CO2BOL solution is back in its original state and ready for reuse.

Heldebrant and colleagues have developed organic liquid systems that bind three additional acid gases found in emissions. He will talk about new work with , carbonyl sulfide, and carbon disulfide -- all acid gases that are environmentally harmful -- at the American Chemical Society Fall 2009 Meeting and Exposition, Tuesday, August 18.

Source: Pacific Northwest National Laboratory (news : web)

Explore further: Why Americans can't buy some of the best sunscreens

Related Stories

All Earth wants for Christmas? A sock for its coal

Dec 04, 2004

Concerns about greenhouse gases and global warming are getting scientists to think in unconventional ways about how to stem the carbon dioxide tide. Indiana University Bloomington geologist Chen Zhu is trying to determine ...

Recommended for you

Why Americans can't buy some of the best sunscreens

1 hour ago

With summer nearly here, U.S. consumers might think they have an abundance of sunscreen products to choose from. But across the Atlantic, Europeans will be slathering on formulations that manufacturers say provide better ...

Expanding the code of life with new 'letters'

1 hour ago

The DNA encoding all life on Earth is made of four building blocks called nucleotides, commonly known as "letters," that line up in pairs and twist into a double helix. Now, two groups of scientists are reporting ...

'Cold soak' process turns up the heat on wines

2 hours ago

Those pondering which elements make the best drop of wine may be surprised to learn different climates produce mixed results when it comes to wines made using the 'cold soak' process.

Devices designed to identify pathogens in food

3 hours ago

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

5 hours ago

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jcrow
not rated yet Aug 24, 2009
But But, Why strip CO2 from exhaust when global warming does not exist. It is only a sneaky liberal strategy to socialize America and steal money from your grandparents after beating them up with a baseball bat. Waahhhh Waaahhhhhh.....
Fox news told me so.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.