Scientists identify gene for resistance to parasitic 'witchweed'

Aug 27, 2009
Scientists identify gene for resistance to parasitic 'witchweed'
Michael Timko. (Photo: Dan Addison)

(PhysOrg.com) -- The parasitic flowering plant Striga, or "witchweed," attacks the roots of host plants, draining needed water and nutrients and leaving them unable to grow and produce any grains. Witchweed is endemic throughout sub-Saharan Africa, causing crop losses that surpass hundreds of millions of dollars annually and exacerbating food shortages in the region.

Among the crops heavily parasitized by witchweed is black-eyed pea, known in Africa as "cowpea" or "niebe" in Francophone countries.

About 80 percent of the world's cowpea crop is grown in sub-Saharan Africa, mostly by subsistence farmers who lack the resources to purchase expensive herbicides and fertilizers. In this region, cowpea is the primary protein source for millions of people, who consume the entire plant - the pea for soups, stews and breads, the leaves as fresh greens, the stems as hay and fodder for cattle.

As the use of cowpea expanded over time, so did the prevalence of Striga gesnerioides, the type of witchweed adapted to parasitize it. Today, witchweed is so virulent that farmers in this semi-arid region must relocate their cowpea crop to new soil every few years.

Now, scientists at the University of Virginia have identified a gene in cowpea that confers resistance to witchweed attack. This discovery will help researchers better understand how some can resist Striga, while others, such as corn and sorghum, are susceptible.

The findings are presented in the Aug. 28 issue of the journal Science.

"Discovery of this resistance gene is not only important for improving cowpea, but may help us develop strategies for improving resistance to Striga in other affected crops," said Michael P.Timko, the U.Va. biology professor who led the study.

Currently there are no natural sources of Striga resistance in corn or sorghum, both of which are major cereal grains in the African diet.

"Making plants durably resistant to Striga could have a significant impact on food security for Africa," Timko said.

In recent years, he and other scientists have sequenced the cowpea genome and are using this information to develop cowpea plants with multiple improved agronomic traits.

"It is now possible for us to identify all possible genes for Striga resistance in cowpeas, as well as resistance to other cowpea pathogens," Timko said. "We may even eventually breed a more drought-resistant plant and varieties that have higher levels and a better balance of nutrients. We've reached a point where we can manipulate this plant for the good of millions of people."

Timko's approach is to improve the performance of plants by identifying genes that control key characteristics, and then using selective breeding to emphasize those traits.

While he is finding success breeding parasite-resistant hybrids, there are at least seven different races of Striga, each capable of adapting to changing varieties of cowpeas.

"We are trying to create a plant that is resistant across the board," he said. "Striga is hyper-virulent. This is warfare between the cowpea plant and its parasite, and we keep trying to stay ahead of the enemy."

Source: University of Virginia (news : web)

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Plant Parasite 'Wiretaps' Host

Jul 30, 2008

A parasitic plant that sucks water and nutrients from its plant host also taps into its communications traffic, a new report finds. The research could lead to new ways to combat parasites that attack crop plants.

Outwitting pesky parasites

Jul 15, 2007

Across the southern United States, an invisible, yet deadly parasite known as the root-knot nematode is crippling soybean crops. While plant breeders are racing to develop cultivars resistant to the root-knot nematode, they ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.