Metal composition hold key to identity of modern sculptures

July 30, 2009

How do you tell when, where and how a Picasso or a Matisse sculpture was cast? Could bronze sculptures have their very own DNA?

By linking data from the alloy composition of modern sculptures with parameters from art history, Dr. Marcus Young from Northwestern University together with collaborators from the Art Institute of Chicago, have classified the unique composition profiles of cast bronze sculptures by major European artists of the first half of the 20th century, profiles which could be used as another method to identify, date and even authenticate sculptures. Their findings1 are published online in Springer's journal, Analytical & Bioanalytical Chemistry.

Bronzes are copper alloys containing various amounts of tin, zinc and other metals whose presence alter the alloy's melting temperature, the strength and hardness of the sculpture, its resistance to corrosion, and its color and patination. The foundries of the early 20th century were quite secretive about the bronze composition they used to prevent other foundries from producing a superior product, suggesting that alloy composition may be sufficient to identify which foundry cast a particular sculpture. In addition, not all the sculptures carry a foundry mark or have documentary evidence to identify where and when they were cast. An in-depth knowledge of bronze composition is therefore important to the art historian and connoisseur studying 20th century sculpture and trying to address questions of authenticity, origin and artist intention.

Dr. Young used a form of optical emission spectroscopy (ICP - OES) to determine the metal composition of 62 modern bronze sculptures cast in Paris in the first half of the 20th century, from the collections of The Art Institute of Chicago and the Philadelphia Museum of Art. Included were sculptures by Matisse, Picasso, Renoir and Rodin, among other masters. This study is the first comprehensive survey of the alloy composition of a large number of modern sculptures by many different artists and foundries, spanning a half century.

The researchers showed that the sculptures consist of copper, with zinc and tin as major alloying elements, varying over a broad range of compositions. They were able to group the sculptures into three distinct types: high-zinc brass*, low-zinc brass* and copper-tin . These three groups show good correlations with the artist, the foundry, the casting date and the casting method. For example, the high-zinc brass alloys correspond to most of the Picasso sculptures cast in lost-wax at the Valsuani foundry post World War II.

The authors conclude that "By expanding the ICP-OES database of objects studied, these material correlations may become useful for identifying, dating or possibly even authenticating other bronzes that do not bear foundry marks."

Source: Springer

Explore further: Ames Lab innovation key to a 'lead-free' Europe

Related Stories

Ames Lab innovation key to a 'lead-free' Europe

February 6, 2006

Lead has long been recognized as a highly toxic material that can cause brain damage. Its use in paint was banned in 1978 and it was later removed from gasoline to further protect human health. But a burgeoning source – ...

Recommended for you

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

Making polymers from a greenhouse gas

July 28, 2015

A future where power plants feed their carbon dioxide directly into an adjacent production facility instead of spewing it up a chimney and into the atmosphere is definitely possible, because CO2 isn't just an undesirable ...

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.