New hope for advances in treating malaria

April 22, 2009

Researchers at the University of Leeds have developed chemicals which kill the most deadly malaria-causing parasite, Plasmodium falciparum - including those resistant to existing drugs.

The compounds work by preventing the enzyme dihydroorotate dehydrogenase (DHODH) - essential to the growth of the parasite - from working, which results in its death.

Says lead researcher Dr Glenn McConkey, from Leeds' Faculty of Biological Sciences: "Without this enzyme, Plasmodium falciparum is unable to grow and therefore it dies. The inhibitors developed at Leeds bind to the DHODH enzyme in the parasite and stop it functioning, preventing the proliferation of the parasites, which live in . In addition, our chemicals are equally effective against parasites that have developed resistance to drugs."

He adds: "DHODH in humans is not an essential enzyme, so by concentrating our studies on it we can develop chemical inhibitors that have a negative impact on the parasite without any major side-effects to the human host. In effect we are exploiting a biological difference, and this will allow us to develop potent, selective inhibitors."

According to the World Health Organisation (WHO), malaria kills a million people across the globe each year, with forty per cent of the world's population at risk of contracting the disease. WHO also estimates that a child dies from malaria every 30 seconds.

Dr McConkey says: "Our chemicals are particularly exciting as they kill malaria parasites at low concentrations, something that is important for medicines as they are massively diluted on entering the and, unlike many pharmaceutical products, we have a firm understanding of the molecular basis of their action. This project highlights the benefits of combining biological and chemistry disciplines."

Dr McConkey says the next stage of this research is to develop a larger collection of potent inhibitors and to see how these chemicals work alongside commonly used treatments.

"The parasites responsible for malaria have been very effective at developing resistance to existing drugs and efforts to find replacements are often stymied by the rate of resistance. Therefore it is essential that new products work effectively in combination with those already on the market," he says.

The research is published in the latest edition of the Journal of Medicinal Chemistry.

Source: University of Leeds (news : web)

Explore further: Protein plays key role in transmitting deadly malaria parasite

Related Stories

Research breakthrough to treat malaria

February 3, 2009

A team of Monash University researchers led by Professor James Whisstock has made a major breakthrough in the international fight against malaria, which claims the life of a child across the world every 30 seconds.

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.