Scientists make quantum leap in developing faster computers

March 19, 2009

( -- Scientists have created a molecular device which could act as a building block for future generations of superfast computers.

The researchers have created components that could one day be used to develop quantum computers - devices based on molecular scale technology instead of and which would be much faster than conventional computers.

The study, by scientists at the Universities of Manchester and Edinburgh and published in the journal Nature, was funded by the European Commission.

Scientists have achieved the breakthrough by combining with molecular machines that can shuttle between two locations without the use of external force. These manoeuvrable magnets could one day be used as the basic component in quantum computers.

Conventional computers work by storing information in the form of bits, which can represent information in binary code - either as zero or one.

Quantum computers will use quantum , or , which are far more sophisticated - they are capable of representing not only zero and one, but a range of values simultaneously. Their complexity will enable quantum computers to perform intricate calculations much more quickly than conventional computers.

Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: "This development brings super-fast, non-silicon based computing a step closer.

"The magnetic involved have potential to be used as qubits, and combining them with molecular machines enables them to move, which could be useful for building quantum computers. The major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them."

Professor Richard Winpenny, of the University of Manchester's School of Chemistry, said: "To perform computation we have to have states where the qubits speak to each other and others where they don't - rather like having light switches on and off.

"Here we have shown we can bring the qubits together, control how far apart they are, and potentially switch the device between two or more states. The remaining challenge is to learn how to do the switching, and that's what we're trying to do now."

Provided by University of Manchester

Explore further: 'Self-correcting' gates advance quantum computing

Related Stories

'Self-correcting' gates advance quantum computing

March 12, 2009

( -- Two Dartmouth researchers have found a way to develop more robust “quantum gates,” which are the elementary building blocks of quantum circuits. Quantum circuits, someday, will be used to operate quantum ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Mar 20, 2009
Down-voted for having such a clichéd, uninformative, and ultimately scientifically illiterate title, for which I presume itself is responsible.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.