Quantum computers could excel in modeling chemical reactions

November 20, 2008

Quantum computers would likely outperform conventional computers in simulating chemical reactions involving more than four atoms, according to scientists at Harvard University, the Massachusetts Institute of Technology, and Haverford College. Such improved ability to model and predict complex chemical reactions could revolutionize drug design and materials science, among other fields.

Writing in the Proceedings of the National Academy of Sciences, the researchers describe "software" that could simulate chemical reactions on quantum computers, an ultra-modern technology that relies on quantum mechanical phenomena, such as entanglement, interference, and superposition. Quantum computing has been heralded for its potential to solve certain types of problems that are impossible for conventional computers to crack.

"There is a fundamental problem with simulating quantum systems -- such as chemical reactions -- on conventional computers," says Alán Aspuru-Guzik, assistant professor of chemistry and chemical biology in Harvard's Faculty of Arts and Sciences. "As the size of a system grows, the computational resources required to simulate it grow exponentially. For example, it might take one day to simulate a reaction involving 10 atoms, two days for 11 atoms, four days for 12 atoms, eight days for 13 atoms, and so on. Before long, this would exhaust the world's computational power."

Unlike a conventional computer, Aspuru-Guzik and his colleagues say, a quantum computer could complete the steps necessary to simulate a chemical reaction in a time that doesn't increase exponentially with the reaction's complexity.

"Being able to predict the outcomes of chemical reactions would have tremendous practical applications," says Ivan Kassal, a graduate student in chemical physics at Harvard. "A lot of research in drug design, materials science, catalysis, and molecular biology is still done by trial and error. Having accurate predictions would change the way these types of science are done."

The researchers demonstrate in PNAS that quantum computers would need to attain a size of about 100 qubits -- which are to quantum computers as bits are to conventional computers -- to outperform current classical supercomputers at a chemical simulation.

"This is still far beyond current prototype quantum computers," Kassal says. "And although it might take millions of quantum elementary operations on a few hundred quantum bits, our work suggests that with quantum computers that are as fast as modern conventional computers, one could simulate in seconds a chemical reaction that would take a conventional computer years."

Rather than using binary bits labeled as "zero" and "one" to encode data, as in a conventional computer, quantum computing stores information in qubits, which can represent both "zero" and "one" simultaneously. When a quantum computer is put to work on a problem, it considers all possible answers by simultaneously arranging its qubits into every combination of "zeroes" and "ones."

Since one sequence of qubits can represent many different numbers, a quantum computer would make far fewer computations than a conventional one in solving some problems. After the computer's work is done, a measurement of its qubits provides the answer.

Source: Harvard University

Explore further: Stirring up a quantum spin-liquid with disorder

Related Stories

Stirring up a quantum spin-liquid with disorder

December 13, 2017

Disorder is generally thought to be detrimental to creating materials with unusual magnetism or other quantum phenomena. However, a team found that weak disorder surprisingly stabilizes a rare quantum state called a quantum ...

A quantum computer to tackle fundamental science problems

September 26, 2017

For more than 50 years, Moore's Law has reigned supreme. The observation that the number of transistors on a computer chip doubles roughly every two years has set the pace for our modern digital revolution—making smartphones, ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

Heavy oils and petroleum coke raising vanadium emissions

December 15, 2017

Human emissions of the potentially harmful trace metal vanadium into Earth's atmosphere have spiked sharply since the start of the 21st century due in large part to industry's growing use of heavy oils, tar sands, bitumen ...

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.