James Webb space telescope's actual 'spine' now being built

February 9, 2009
A "pathfinder" backplane is currently in production. It's used as a test to dry-run many of the critical, high-risk activities that are associated with the assembly, integration and test of the flight hardware. This photo emphasizes the assembly tools (silver-colored) which keep all the backplane (black tubes) in place as they are bonded. Credit: Northrop Grumman

Scientists and engineers who have been working on the James Webb Space Telescope mission for years are getting very excited, because some of the actual pieces that will fly aboard the Webb telescope are now being built. One of the pieces, called the Backplane, is like a "spine" to the telescope. The Backplane is now being assembled by Alliant Techsystems at its Magna, Utah facility.

The Webb telescope stands as big as a two-story house, and the Backplane is a core part of the design as it will support the telescope's 21-foot diameter (6.5 meter) primary mirror. Not only will the Backplane be carrying a large mirror, but it will be supporting a lot of weight. It will be carrying 7,500 lbs (2400 kg) of telescope optics and instruments during space launch to the telescope's operational position 990,000 miles (1,584,000 km) from Earth.

"The Webb telescope's ultimate ability to discover the first stars and galaxies is critically dependent on the mirror backplane performing to fantastically demanding standards," said Eric Smith, Webb Telescope program scientist at NASA Headquarters, Washington.

Being the "spine" of the mirror requires it to essentially be motionless while the mirrors move to see far into deep space. Imagine holding the handle of a magnifying glass to see a tiny object. If your hand shakes a lot, it will be hard to focus on the object. So, just as you have to hold the magnifying glass handle steady with your hand, the Webb backplane has to hold the telescope mirrors steady, to allow them to focus.

This structure is also designed to provide unprecedented thermal stability performance at temperatures colder than -400°F (-240°C). That means it is engineered to move less than 32 nanometers, which is 1/10,000 the diameter of a human hair in the extreme cold of space.

Alliant Techsystems' (ATK's) Backplane represents an improvement in dimensional stability performance of 1000-times, a threefold increase in size, and operational capability at temperatures far colder than any prior space telescope.

The Backplane is made with advanced graphite composite materials mated to titanium and invar fittings and interfaces. Invar is a nickel steel alloy notable for its uniquely low changes due to thermal expansion. It will be completed and delivered to Northrop Grumman in late 2010 for integration into the Webb telescope.

The James Webb Space Telescope is expected to launch in 2013. By observing in infrared light, it will be able to see faint and very distant objects, explore distant galaxies, formation of star systems, and nearby planets and stars. Webb will be able to see "back in time" to the first light after the Big Bang. The information it will send back to Earth will give scientists clues about the formation of the universe and the evolution of our own solar system.

Source: NASA's Goddard Space Flight Center

Explore further: The universe's resolution limit—why we may never have a perfect view of distant galaxies

Related Stories

James Webb Space Telescope 'wings' successfully deployed

November 16, 2015

Recently inside the clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland, engineers successfully completed two deployments for the James Webb Space Telescope's "wings" or side portions of the backplane ...

NASA vs. cigarettes—a numbers game

November 17, 2015

People often criticize the amount of money spent on space exploration. Sometimes it's well-meaning friends and family who say that that money is wasted, and would be better spent on solving problems here on Earth. In fact, ...

Hubble views a lonely galaxy

November 16, 2015

Only three local stars appear in this image, quartered by right-angled diffraction spikes. Everything besides them is a galaxy; floating like a swarm of microbes in a drop of water, and brought into view here not by a microscope, ...

Recommended for you

Earth might have hairy dark matter

November 23, 2015

The solar system might be a lot hairier than we thought. A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, proposes the existence of ...

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...

Scientists detect stellar streams around Magellanic Clouds

November 23, 2015

(Phys.org)—Astronomers from the University of Cambridge, U.K., have detected a number of narrow streams and diffuse debris clouds around two nearby irregular dwarf galaxies called the Magellanic Clouds. The research also ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.