Magnetic nanoparticles: Suitable for cancer therapy?

May 28, 2008

A measuring procedure developed in the Physikalisch-Technische Bundesanstalt (PTB) can help to investigate in some detail the behaviour of magnetic nanoparticles which are used for cancer therapy.

Magnetic nanoparticles (with a size of some few to several hundred nanometres) are a new, promising means of fighting cancer. The particles serve as a carrier for drugs: "loaded" with the drugs, the nanoparticles are released into the blood stream, where they move until they come under the influence of a targeting magnetic field which holds them on to the tumour – until the drug has released its active agent.

Besides this pharmaceutical effect, also a physical action can be applied: an electromagnetic a.c. field heats up the accumulated particles so much that they destroy the tumour. Both therapeutic concepts have the advantage of largely avoiding undesired side effects on the healthy tissue.

These procedures have already been successfully been applied in the animal model and have, in part, already been tested on patients. Here it is important to know before application whether the particles tend to aggregate and thus might occlude blood vessels.

Information about this can be gained by magnetorelaxometry developed at the PTB. In this procedure, the particles are shortly magnetised by a strong magnetic field in order to measure their relaxation after the switch-off of the field by means of superconducting quantum interferometers, so-called "SQUIDs".

Conclusions on their aggregation behaviour in these media can be drawn from measurements of suspensions of nanoparticles in the serum or in whole blood. As an example, it could be shown in this way that certain nanoparticles in the blood serum form clusters with a diameter of up to 200 nm – a clear indication of aggregation, so that these nanoparticles do not appear to be suitable for therapy.

At present, the high technical effort connected with the use of helium-cooled magnetic field sensors is still standing in the way of using this method routinely in practice. In a joint project with Braunschweig Technical University supported by the Ministry of Education and Research (BMBF), the procedure is currently being transferred to a simpler technology based on fluxgate magnetometers.

Source: Physikalisch-Technische Bundesanstalt

Explore further: Self-replicating nanostructures made from DNA

Related Stories

Putting a new spin on plasmonics

May 07, 2015

Researchers at Finland's Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects. They experimentally demonstrated that patterning of magnetic materials into arrays ...

Researchers exploring spintronics in graphene

May 06, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Combining magnetism and light to fight cancer

Apr 01, 2015

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Recommended for you

Self-replicating nanostructures made from DNA

5 hours ago

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 29, 2008
If you can COOL the cell you can DE-CELERATE MITOSIS!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.