Nanosize Rods Light Up Pancreatic Cancer Cells

April 18, 2008

Quantum dots have shown promise as ultrabright contrast agents for use in a variety of cancer imaging studies. Now, a team of investigators at the Multifunctional Nanoparticles in Diagnosis and Therapy of Pancreatic Cancer Platform Partnership, headed by Paras Prasad, Ph.D., of the State University of New York at Buffalo, has shown that quantum rods may perform even better than their spherical cousins.

Reporting their work in the journal Advanced Materials, the investigators created quantum rods of two different sizes: One quantum rod emitted orange light; the other emitted red light.

The investigators then attached the red quantum rod to a monoclonal antibody that recognizes a protein known as mesothelin and the orange quantum rod to a monoclonal antibody that binds to a protein known as Claudin-4. These two proteins are overexpressed by both primary and metastatic human pancreatic cancer cells. After adding both of the conjugated quantum rods to pancreatic cells growing in culture, the investigators were able to easily spot both optical labels using standard fluorescence microscopy.

Subsequent experiments showed that the cells took in the quantum rods via a process known as receptor-mediated endocytosis. When the same quantum rods were added to tumor cells that do not overexpress mesothelin or Claudin-4, the quantum rods were not taken up by the nontargeted tumor cells. These results show that cell uptake is specific to those cells targeted by the antibodies conjugated to the quantum rods.

This work, which was supported in part by the NCI’s Alliance for Nanotechnology in Cancer, is detailed in the paper “Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods.” An abstract of this paper is available at the journal’s Web site.

Source: National Cancer Institute

Explore further: Drug-encapsulating nanoparticle to measure how anticancer chemotherapy formulations enter cells

Related Stories

Many uses in researching quantum dots

May 4, 2015

It's easier to dissolve a sugar cube in a glass of water by crushing the cube first, because the numerous tiny particles cover more surface area in the water than the cube itself. In a way, the same principle applies to the ...

Team creates MRI for the nanoscale

February 13, 2013

Magnetic resonance imaging (MRI) reveals details of living tissues, diseased organs and tumors inside the body without x-rays or surgery. What if the same technology could peer down to the level of atoms? Doctors could make ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.