Engineering students: Airbrush not just for artists

February 14, 2008
Engineering students: Airbrush not just for artists
A microelectrode made in part with an airbrush is seen in this photo shot at a University of Florida laboratory. On a suggestion from a student who had a hobby making paper airplanes, UF engineering students came up with a way to use airbrushes to make the microelectrodes, which are used in glucose monitors for diabetics and other sensors. The airbrush technique is far cheaper and simpler than the standard one, though it works best for small, customized jobs rather than in mass production. Credit: University of Florida

The airbrush, that tool behind tattoos and T-shirts, may have an unexpected future … in technology.

A group of engineering students at the University of Florida has come up with a method for using an airbrush to make microelectrodes — tiny conductors used in an increasing range of consumer, research and medical products. The technique is simpler than the standard one, at least for small projects that require production of only a few electrodes.

“The idea was to try to find something cheap and quick, that we could do in our own lab without much expense,” said student Corey Walker.

Walker was one of four UF engineering students who worked on the project. Now a doctoral student in biomedical engineering at the University of California, Irvine, he is the lead author of a paper appearing this month in the online edition of the journal Electroanalysis.

Microelectrodes are highly sensitive, fingernail-sized devices used, for example, in off-the-shelf glucose monitors for diabetics. They are also vital to “lab on a chip” devices under development to identify substances in air, blood or other samples.

The industry standard for manufacturing microelectrodes is screen printing, a technique that, oddly, is also borrowed from the visual arts. But it requires a screen printer, and the students, who were trying to craft a hydrogen sensor, didn’t have one.

So a student who used airbrushes to build model airplanes suggested they try that tool. Trials and tests perfected the approach, with the students eventually using fully airbrushed electrodes to craft a working sensor. The technique works best for small projects because it requires each electrode to be made individually or in small batches.

“A screen-printing machine useful for fabricating microelectrodes might cost $10,000, whereas you can buy an airbrush for less than $200,” said Hugh Fan, an associate professor of mechanical and aerospace engineering who oversaw the project. “So this is a useful technique for small, custom projects.”

Source: University of Florida

Explore further: Wildfire management vs. fire suppression benefits forest and watershed

Related Stories

Light-driven atomic rotations excite magnetic waves

October 24, 2016

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how the ultrafast light-induced modulation of the atomic positions ...

Bacterial genes boost current in human cells

October 18, 2016

Duke University biomedical engineers have harvested genes for ion channels from bacteria that, with a few tweaks, can create and enhance electrical signaling in human cells, making the cells more electrically excitable.

Recommended for you

Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.