Printable, Flexible Carbon-Nanotube Transistors

January 8, 2008 By Laura Mgrdichian feature

Scientists from the University of Massachusetts Lowell and Brewer Science, Inc. have used carbon nanotubes as the basis for a high-speed thin-film transistors printed onto sheets of flexible plastic. Their method may allow large-area electronic circuits to be printed onto almost any flexible substrate at low cost and in mass quantities.

Applications for these flexible electronics include electronic paper, RFID (radio frequency identification) tags to track goods and people, and “smart skins,” which are materials and coatings containing electronic circuitry that can indicate changes in temperature or pressure, such as on aircraft or other objects.

Printing circuits onto plastic is not a new achievement. Researchers have created printed circuits at room temperature using various semi-conducting polymers as the carrier transport medium, and many, many research groups across the globe continue to work toward perfecting the process and product.

“A problem with these polymers is that they have limited carrier mobility, meaning electrons travel through them fairly slowly. This limits the speed of the devices made from them to only a few kilohertz,” said UMass Lowell Professor Xuejun Lu, the study's corresponding researcher, to PhysOrg.com.

Modern computers, by comparison, have speeds from hundreds of megahertz to more than one gigahertz.

As part of the printed-electronics effort, carbon nanotubes have been investigated as a medium for high-speed transistors, with very promising results. But one method of depositing the nanotubes onto the plastic, “growing” them with heat, requires very high temperatures, typically around 900°C, which is a major obstacle for fabricating electronic devices.

Additionally, transistors made from single carbon nanotubes or low-density nanotube films, which are produced by depositing a small amount of a nanotube solution onto a substrate, can carry only a small amount of current. High-density films (more than than 1,000 nanotubes per square micrometer, or millionth of a meter) are better, but most are not of sufficient quality, containing carbon “soot” that covers the nanotubes' sidewalls and hinders carrier flow.

To help solve these issues, Brewer Science, Inc. developed an electronic-grade carbon-nanotube solution. The researchers deposited a tiny droplet of the solution onto a plastic transparency film at room temperature using a syringe, a method similar to ink-jet printing.

“Our electronic-grade solutions contain ultrapure carbon nanotubes without using any surfactant. Our printed transistor's carrier mobility is much higher than similar devices developed by other groups, it exhibits a speed of 312 megahertz, and can carry a large current,” said Dr. Xuliang Han, Senior Research Engineer at Brewer Science.

This research is described in the November 16, 2007, online edition of Micro & Nano Letters.

Citation: Micro & Nano Letters -- December 2007 -- Volume 2, Issue 4, p. 96-98

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Focused laser power boosts ion acceleration

Related Stories

Focused laser power boosts ion acceleration

August 7, 2015

An international team of physicists has used carbon nanotubes to enhance the efficiency of laser-driven particle acceleration. This significant advance brings compact sources of ionizing radiation for medical purposes closer ...

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all these possible uses ...

An efficient path from carbon to renewable fuel production

March 31, 2015

Earth-abundant materials based primarily on carbon, nitrogen and transition metal oxides can be combined into highly efficient energy conversion devices. These devices can be used in fuel cells as well as in electrolysis. ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

photojack
1 / 5 (4) Jan 08, 2008
Well, I'm waiting for wrist watch-sized main frame computers and servers. Everyone will need magnifying glasses to see the screen and keyboard! They'll have to engineer USB ports the size of a human hair!
Quantum_Conundrum
1 / 5 (1) Jan 08, 2008
based on Moore's Law, you should be able to fit the equivalent of a modern quad core computer into a volume the size of wrist watch in ~20-27 years.

At that time, a top of the line "PC" would be over 10,000 times as powerful as a modern PC, that is, if people find any use for such a device under those circumstances. After all, why would a "normal" person need a computer that strong? A PC that powerful would have more than enough processing power to run Star Trek style holographic environments (assuming the other technologies involved were to catch up.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.