Printable, Flexible Carbon-Nanotube Transistors

January 8, 2008 By Laura Mgrdichian feature

Scientists from the University of Massachusetts Lowell and Brewer Science, Inc. have used carbon nanotubes as the basis for a high-speed thin-film transistors printed onto sheets of flexible plastic. Their method may allow large-area electronic circuits to be printed onto almost any flexible substrate at low cost and in mass quantities.

Applications for these flexible electronics include electronic paper, RFID (radio frequency identification) tags to track goods and people, and “smart skins,” which are materials and coatings containing electronic circuitry that can indicate changes in temperature or pressure, such as on aircraft or other objects.

Printing circuits onto plastic is not a new achievement. Researchers have created printed circuits at room temperature using various semi-conducting polymers as the carrier transport medium, and many, many research groups across the globe continue to work toward perfecting the process and product.

“A problem with these polymers is that they have limited carrier mobility, meaning electrons travel through them fairly slowly. This limits the speed of the devices made from them to only a few kilohertz,” said UMass Lowell Professor Xuejun Lu, the study's corresponding researcher, to PhysOrg.com.

Modern computers, by comparison, have speeds from hundreds of megahertz to more than one gigahertz.

As part of the printed-electronics effort, carbon nanotubes have been investigated as a medium for high-speed transistors, with very promising results. But one method of depositing the nanotubes onto the plastic, “growing” them with heat, requires very high temperatures, typically around 900°C, which is a major obstacle for fabricating electronic devices.

Additionally, transistors made from single carbon nanotubes or low-density nanotube films, which are produced by depositing a small amount of a nanotube solution onto a substrate, can carry only a small amount of current. High-density films (more than than 1,000 nanotubes per square micrometer, or millionth of a meter) are better, but most are not of sufficient quality, containing carbon “soot” that covers the nanotubes' sidewalls and hinders carrier flow.

To help solve these issues, Brewer Science, Inc. developed an electronic-grade carbon-nanotube solution. The researchers deposited a tiny droplet of the solution onto a plastic transparency film at room temperature using a syringe, a method similar to ink-jet printing.

“Our electronic-grade solutions contain ultrapure carbon nanotubes without using any surfactant. Our printed transistor's carrier mobility is much higher than similar devices developed by other groups, it exhibits a speed of 312 megahertz, and can carry a large current,” said Dr. Xuliang Han, Senior Research Engineer at Brewer Science.

This research is described in the November 16, 2007, online edition of Micro & Nano Letters.

Citation: Micro & Nano Letters -- December 2007 -- Volume 2, Issue 4, p. 96-98

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Research could lead to nanosensors that recognize fibrinogen, insulin, or other biomarkers

Related Stories

Stretchable, transparent heater made from metallic glass

January 7, 2016

(Phys.org)—Researchers have fabricated a stretchable and transparent electrode that can be used for applications such as heating parts of the body and defrosting the side view mirrors on cars. It is the first stretchable ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...

Grafting olfactory receptors onto nanotubes

July 26, 2011

(PhysOrg.com) -- Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

'Writing' Patterns on Carbon Nanotubes With Polymer Chains

May 19, 2009

(PhysOrg.com) -- Carbon nanotubes are at the center of the nanoelectronics research movement, with scientists making great progress toward getting nanotube-based electronic devices into the hands of consumers. But one area ...

Recommended for you

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

photojack
1 / 5 (4) Jan 08, 2008
Well, I'm waiting for wrist watch-sized main frame computers and servers. Everyone will need magnifying glasses to see the screen and keyboard! They'll have to engineer USB ports the size of a human hair!
Quantum_Conundrum
1 / 5 (1) Jan 08, 2008
based on Moore's Law, you should be able to fit the equivalent of a modern quad core computer into a volume the size of wrist watch in ~20-27 years.

At that time, a top of the line "PC" would be over 10,000 times as powerful as a modern PC, that is, if people find any use for such a device under those circumstances. After all, why would a "normal" person need a computer that strong? A PC that powerful would have more than enough processing power to run Star Trek style holographic environments (assuming the other technologies involved were to catch up.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.