Surface plasmons enhance nanostructure possibilities

September 18, 2007 By Miranda Marquit feature

As technology becomes smaller and smaller, scientists work to find solutions to a variety of problems in many different fields. It is known that light could be used for studying molecules and atoms, as well as for solving problems of quantum information processing and even for lab-on-chip applications in biology. The problem is how to reduce size of such optical devices to the level compatible with modern nanotechnology.

A group of scientists from University College London and at the Queen’s University of Belfast have demonstrated a principle of achieving ultrahigh light dispersion that makes use of surface plasmon polaritons on nanostructures.

“We have proposed a new principle to realize a microscale spectral device using the properties of surface plasmons on metallic nanostructures that can provide wavelength separation of one or more orders of magnitude better than in other state-of-the-art wavelength-splitting devices available to date,” Anatoly Zayats, one of the scientists at Queen’s University, tells via email. He and his colleagues have published their process, and the results of their experiment, in a Physical Review Letters piece: “Dispersing Light with Surface Plasmon Polaritonic Crystals.”

Zayats points out that using conventional light diffraction can be difficult in optical communications and other systems because bulk three dimensional grating. “It is not possible to have several next to each other because of the size,” he says via phone.

This problem is solved by the use of surface plasmon polaritons (SPPs). The SPPs used in the demonstration by the group from University College and Queen’s University are on a periodic nanostructure. In this realization, the dispersion process has two stages: the first changes incident light into SPP Bloch modes and the second involves refraction of the SPP Bloch waves. A metallic nanostructure both excites and diffracts the SPPs. Zayats says, “This significantly enhances the dispersion through the combination of conventional diffraction, amplified by the photonic superprism-like effect.”

Uses for the plasmonic light dispersion would be in such areas as quantum information processing, lab-on-chip applications (especially in biology) for spectral analysis, chemistry and electronic engineering. Additionally, the high-resolution capabilities of this novel technique would allow for further study in fundamental physics. The Group is most excited about the implications for optical communications as signal processing devices.

Zayats insists that the process is compatible with current technologies. The development and testing of the technique illustrates that it is possible with today’s scientific capabilities. However, he continues, using this SPP nanostructure technology “would require some work to interface conventional photonic devices and the proposed plasmonic device.” Zayats says that even though it is possible to achieve this, the difficulty is efficiently integrating it with current practical technology. “Interfacing is the problem that plasmonic in general is currently facing.”

But Zayats remains optimistic that the system he and his colleagues have worked out will be viable. He maintains that there are several methods in the works by different scientific groups with regard to solving the problem of plasmonic integration: “As soon as this will be resolved to everyone's satisfaction, we will most definitely see the dispersion plasmonic device widely employed in standard optical communications.”

Copyright 2007
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Phenomenon could lead to more compact, tunable X-ray devices made of graphene

Related Stories

New technology colors in the infrared rainbow

November 9, 2015

Researchers have devised a technology that can bring true color to infrared imaging systems, like the one used to track Arnold Schwarzenegger through the jungle in the movie "Predator."

Mitochondria on guard of human life

November 18, 2015

A group of researchers from Lomonosov Moscow State University in collaboration with Russian Science Foundation has developed a unique method for the selective study of electron transport chain in living mitochondria by using ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.