See what you're spewing as you speed along

Aug 06, 2007

In future drivers may only have to glance at the dashboard to see the pollution spewing out of their vehicle’s exhausts.

A team from The University of Manchester has constructed a laser measuring device capable of recording levels of carbon dioxide, carbon monoxide and methane from directly inside an exhaust.

Once optimised, the process could be incorporated into onboard diagnostic systems that would monitor emissions as vehicles drive along – and potentially help people reduce their emissions by adjusting their driving style.

Reporting in the Optical Society of America’s journal Applied Optics, academics claim this approach is faster and more sensitive than the extractive techniques normally used to monitor emissions.

In an MOT test, for example, exhaust emissions are extracted into a box while the engine is idling and the gases present are then measured.

The University of Manchester team employed a device known as a ‘near-IR diode laser sensor’ to measure the variation in gas concentration during changes in the operating conditions of a Rover engine, such as increasing and decreasing the throttle, adjusting the air to fuel ratio, and start-up.

“This is the first instance of this type of near-IR diode laser sensor being used directly in the exhaust of a static internal combustion engine to measure emissions,” said Dr Philip Martin, one of the paper’s authors.

The team say the components for the device are readily available and the near-IR technology allows highly accurate readings to be taken and also cuts out interference.

In the studies reported in Applied Optics, the near-IR device used two diode lasers operating at different frequencies; one detecting carbon monoxide and carbon dioxide and the other detecting methane.

The team measured the emissions produced by a Rover K-series car engine mounted on a test bed – but they have also taken the process outside the laboratory and measured exhaust emissions in passing vehicles.

“Components handling the high sensitivity and robustness required to apply this approach in the real world are only now becoming available,” added Dr Martin. “We have already constructed a battery-powered roadside unit using the same technology, employing rugged and robust telecommunications components.”

The next steps will be to fully quantify the technique and add additional lasers for other key emissions such as nitrogen oxide, nitrogen dioxide and specific hydrocarbons.

Source: University of Manchester

Explore further: Collision course: ONR testing high-speed planing hulls to better understand wave slam

Related Stories

Supermarkets welcome cold-comfort edge of F1 aerofoils

Apr 25, 2015

UK-based Williams Advanced Engineering, the technology and engineering services business of the Williams Group, has collaborated with UK-based Aerofoil Energy to develop an aerodynamic device that can reduce ...

Nano-policing pollution

May 13, 2015

Pollutants emitted by factories and car exhausts affect humans who breathe in these harmful gases and also aggravate climate change up in the atmosphere. Being able to detect such emissions is a critically ...

Defects in atomically thin semiconductor emit single photons

May 04, 2015

Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for ...

Two-dimensional semiconductor comes clean

Apr 27, 2015

In 2013 James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, and colleagues at Columbia demonstrated that they could dramatically improve the performance of graphene—highly ...

Recommended for you

Off-road run-ins for driverless fleets

8 hours ago

Carlos Holguin from the University of Rome, project coordinator with the CITYMOBIL2 project, talks about how the project is demonstrating automated road passenger transport through large and small-scale off-normal traffic ex ...

Image: View from an F-15D

11 hours ago

NASA pilot Jim Less and photographer Jim Ross pull their F-15D #897 aircraft away from a KC-135 refueling tanker. NASA is supporting the Edwards Air Force Base F-15 program with safety and photo chase expertise.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.