Nanoparticles carry chemotherapy drug deeper into solid tumors

June 26, 2007

A new drug delivery method using nano-sized molecules to carry the chemotherapy drug doxorubicin to tumors improves the effectiveness of the drug in mice and increases their survival time, according to a study published online June 26 in the Journal of the National Cancer Institute.

In the past, similar drug carriers have improved targeted delivery of the drugs and reduced toxicity, but they sometimes decreased the drugs’ ability to kill the tumor cells. Using a new drug carrier, Ning Tang of the Chinese Academy of Sciences in Beijing and colleagues compared tumor growth and survival in mice that were given doxorubicin in the nanocarriers or on its own.

Doxorubicin delivered by nanocarriers was more effective in preventing tumor growth than free doxorubicin, and the mice receiving this treatment method lived longer and had fewer toxic side effects.

“Encapsulation of doxorubicin…increased its accumulation and penetration in tumors in terms of both the percentage of cells that were reached by the drug and the intracellular levels that were attained,” the authors write.

In an accompanying editorial, Matthew Dreher, Ph.D., of the National Institutes of Health in Bethesda, Md., and Ashutosh Chilkoti, Ph.D., of Duke University in Durham, N.C., discuss the future of drug delivery, which they think should focus on three important research areas—drug combinations, targeting, and integration.

“The study by Tang [and colleagues] is a simple but effective demonstration of the benefits of integration of a drug with an appropriate carrier to yield a striking gain in efficacy,” the authors write. “May the days of pharmacological missiles that miss their target and friendly fire that kills patients soon be over!”

Source: Journal of the National Cancer Institute

Explore further: Nanocarriers may carry new hope for brain cancer therapy

Related Stories

Nanocarriers may carry new hope for brain cancer therapy

November 19, 2015

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into surrounding tissue, is virtually inoperable, resistant to therapies, ...

Flowing toward red blood cell breakthroughs

October 14, 2015

A team of researchers from Brown University and ETH Zurich the Universita da Svizzera Italiana (USI) and Consiglio Nazionale delle Ricerche (CNR) is using America's largest, most powerful supercomputer to help understand ...

Gadolinium-based particles show and treat tumours

October 27, 2015

Neutron-capture therapy (NCT) provides an effective localised treatment for irradiating cancer tumours. However to ensure only cancerous cells are destroyed it is helpful to see where NCT drugs have accumulated in order to ...

A more direct delivery of cancer drugs to tumors

April 21, 2009

( -- An interdisciplinary team of researchers at Brigham and Women’s Hospital (BWH) and the Harvard-MIT Division of Health Sciences and Technology (HST) has demonstrated a better way to deliver cancer drugs ...

Enabling nanoparticles to penetrate deeply in tumors

February 23, 2011

Too often, researchers designing nanoparticles capable of delivering effective doses of anticancer agents to tumors must balance the need to choose a nanoparticle that is small enough to escape the leaky blood vessels that ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.