A new system for collaboration in cell communication

June 26, 2007

Investigators from the Institute of Research in Biomedicine (IRB Barcelona) have identified a new signalling mechanism among cells in the fruit fly, Drosophila melanogaster. The researchers found that two independent groups of cells generate the same signal by different pathways and that these cells subsequently act together to send the signal to the target cell. In this manner, the receptor cell receives the signal from two distinct sources.

The results of this study appear in today’s advanced electronic issue of the journal, PNAS.

Jordi Casanova (IRB Barcelona/CSIC) explains that different types of cells working together to send a message can be regarded as a “security measure designed to ensure that the signal reaches the receptor cell in the proper fashion, neither too weakly nor too strongly”. Using RNA interference techniques (RNAi), the researchers observed that it was necessary to disactivate the signal in both groups of cells in order to prevent the message from being sent. They also observed that overstimulating signal production (producing more of the signalling molecule) created problems in the receptor cell, causing it to develop incorrectly.

Researchers made the discovery by studying the behaviour of a gene called torso-like during the early stages of embryonic development of the Drosophila fly. Two groups of cells activated the same torso-like gene separately and by different mechanisms when they were still in separate compartments inside the Drosophila ovary. Subsequently, the cells migrated until they met and jointly signalled the target cell.

Marc Furriols, lead author of the study, explains that the torso-like gene activates a membrane receptor molecule that is specific to Drosophila, but that the molecule belongs to a receptor family (that includes, for example, the human growth factor), which also reacts when it receives an external signal. “This research describes a very signalling mechanism in the fly which is very basic. It gives us good insight into how these mechanisms work so that we can later manipulate and control them.

Many of these pathways and signalling systems have been observed throughout evolution and hence, studies with models such as the fruit fly, can provide further insight into how these signalling mechanisms work in humans.

Source: Institute for Research in Biomedicine

Explore further: Biologists crack centuries-old mystery of how cell growth triggers cell division

Related Stories

In future, the internet could come through your lightbulb

September 29, 2015

The tungsten lightbulb has served well over the century or so since it was introduced, but its days are numbered now with the arrival of LED lighting, which consume a tenth of the power of incandescent bulbs and have a lifespan ...

Study adds to evidence that viruses are alive

September 25, 2015

A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report. The study offers the first reliable method for tracing viral evolution back to ...

Recommended for you

NASA measuring the pulsating aurora

October 7, 2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.