Solar breakthrough could lead to cheaper power

May 2, 2007

Solar energy could become more affordable following a breakthrough by Australian scientists, who have boosted the efficiency of solar cell technology.

The advance could see the price of an installed solar system for an average house fall from around AUD$20,000 to $15,000. Up to 45 percent of the cost of solar cell technology is due to the high cost of the silicon used to convert sunlight to electricity.

Silicon is the material of choice in the electronics industry because of its stability, non-toxicity and ubiquity. However, silicon is a poor absorber of light. In a bid to drive down costs, scientists have moved from using expensive thick silicon "wafers" to cheaper "thin film" cells, containing less silicon.

The disadvantage of these one-to-two micron-thick films is that they convert only eight to 10 percent of incoming sunlight into electricity, compared to the 25 percent efficiency of thicker, more expensive, silicon wafers. Scientists around the world are testing new ways to boost the efficiency of thin film technology, while keeping down costs.

Now, researchers at the University of New South Wales' ARC Photovoltaics Centre of Excellence, led by PhD student Supriya Pillai have reported a 16-fold enhancement in light absorption in 1.25-micron thin-film cells for light with a wavelength of 1050 nm. They have also reported a seven-fold enhancement in light absorption in the more expensive wafer type cells light wavelengths of 1200 nm.

"Most thin-film solar cells are between eight and 10 percent efficient," says Dr Kylie Catchpole, a co-author of the study, "but the new technique could increase efficiency to between 13 and 15 percent."

That's an important advance, she says: "If they're below 10 percent efficient, then you can't really afford to install them, because it would take up too much of your roof area, for example, to power your house." Once the technology approaches 15 per cent efficiency, it becomes commercially viable.

An average house could have its daily power supplied by installing a solar system and panels covering 10 square metres. This system would exclude power for cooking and hot water heating.

The breakthrough, which is reported in the upcoming issue of the Journal of Applied Physics, could eventually see a dramatic rise in solar power’s share of the electricity market. Currently only 30,000 Australian households - out of 8 million - have installed solar panels.

The UNSW researchers have devised a way to deposit a thin film of silver (about 10 nanometres thick) onto a solar cell surface and then heat it to 200° Celsius. This breaks the film into tiny 100-nanometre "islands" of silver that boost the cell’s light trapping ability, thereby boosting its efficiency.

Source: University of New South Wales

Explore further: Earth's magnetic shield is much older than previously thought

Related Stories

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.