Creation of a magnetic field in a turbulent fluid

March 10, 2007

Understanding the origin and behavior of the magnetic fields of planets and stars is the goal of research being carried out by many teams from all over the world. The VKS collaboration (CEA, CNRS, Ecole normale supérieure in Lyon, Ecole normale supérieure in Paris) has succeeded in creating in the laboratory a magnetic field in a highly turbulent flow of liquid sodium.

Although the extreme conditions specific to astrophysical and geophysical environments cannot all be reproduced in the laboratory, the magnetic field observed shows remarkable similarities with magnetic fields observed in the cosmos. The findings represent a significant advance in the understanding of the mechanisms at work in the formation of natural magnetic fields. They are published in Physical Review Letters dated 26 January 2007.

Most of the astrophysical objects which surround us (planets, stars and galaxies) have a magnetic field, whose origin is poorly understood. Such magnetic fields can play a major role in the evolution of various structures throughout the Universe. The Earth's magnetic field, which is very probably caused by the movement of liquid iron in the core, not only makes compass needles point north, but also protects us from the harmful effects of cosmic rays and the solar wind.

As early as 1919, Larmor put forward the hypothesis that the Sun's magnetic field is generated by a "dynamo" effect, in other words by the movement of a fluid that conducts electricity. Because of their highly chaotic (turbulent) nature, the analysis of geophysical and astrophysical flows is beyond the current capacities of numerical simulations, and, until now, has thwarted all attempts at a theoretical approach.

It is only through experimental work that it is possible to reproduce the dynamo phenomenon with parameters that are similar to those that occur naturally. Following experiments carried out in 2000 by teams in Riga and Karlsruhe, the challenge facing the physicists was to show that the fully turbulent motion of a conducting liquid could spontaneously generate a magnetic field.

Since 1998, the VKS collaboration has been studying a highly turbulent flow produced by the movement of two turbines revolving in opposite directions in a cylinder filled with liquid sodium. Liquid sodium is an excellent conductor of electricity, while having a density similar to that of water, unlike many other metals which are much denser. In September 2006, the VKS experiment showed that, when the turbines revolve faster than a critical speed (1020 rpm), the flow spontaneously generates a magnetic field. This is the first time that such results have been observed in a highly turbulent medium.

The result proves that fluid dynamos continue to operate in the presence of strong turbulence of the kinds that occur under natural conditions. The achievement of the dynamo experiment under laboratory conditions opens up many new prospects. In particular, it will make it possible to study the energy balance involved in the production of a magnetic field as well as its dynamics. It may therefore be possible to understand the origin of the pseudoperiodic oscillations in the solar cycle or the irregular reversals of the Earth's magnetic field.

Source: CNRS

Explore further: Hotspots in an active galactic nucleus

Related Stories

Hotspots in an active galactic nucleus

October 24, 2016

The nucleus of a so-called "active" galaxy contains a massive black hole that is vigorously accreting material. As a result, the nucleus often ejects bipolar jets of rapidly moving charged particles that radiate brightly ...

Kepler watches stellar dancers in the Pleiades cluster

August 12, 2016

Like cosmic ballet dancers, the stars of the Pleiades cluster are spinning. But these celestial dancers are all twirling at different speeds. Astronomers have long wondered what determines the rotation rates of these stars.

Image: Planck's flame-filled view of the Polaris Flare

August 23, 2016

This image from ESA's Planck satellite appears to show something quite ethereal and fantastical: a sprite-like figure emerging from scorching flames and walking towards the left of the frame, its silhouette a blaze of warm-hued ...

The proliferation of Jupiter-like worlds

August 29, 2016

Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around.

Recommended for you

Making silicon-germanium core fibers a reality

October 25, 2016

Glass fibres do everything from connecting us to the internet to enabling keyhole surgery by delivering light through medical devices such as endoscopes. But as versatile as today's fiber optics are, scientists around the ...

Controlling ultrasound with 3-D printed devices

October 25, 2016

Ultrasound is more than sound. Obstetricians use it to peer inside a woman's uterus and observe a growing baby. Surgeons use powerful beams of ultrasound to destroy cancer cells. Researchers fire ultrasound into materials ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.