AMO Manufactures First Graphene Transistors

February 8, 2007
AMO Manufactures First Graphene Transistors

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Compared to conventional silicon and SOI MOSFETs the researchers realized a significant enhancement of electron and hole mobility.

Moore’s law, which has dictated ambitious innovation cycles to the semiconductor industry over the last decades, may finally be running out of steam. In the future, innovations for silicon technology may only be realized by integrating new functionalities or novel materials.

Carbon is one of the most probable candidates: impressive potential for nanoelectronics applications has been demonstrated with carbon nanotubes – and graphene!

A conventional CMOS-compatible process has been applied to fabricate a graphene field-effect device – a transistor made from a monolayer of carbon. The observed mobility in the devices exceeds the universal mobility in silicon MOSFETs. Furthermore, a second transistor gate was placed on top of the graphene film for the first time. AMO’s results confirm the high potential of graphene for future nanoelectronic devices.

First experimental details will be published in IEEE Electron Device Letters in April 2007.

Citation: M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, “A Graphene Field Effect Device”, IEEE Electron Device Letters, Vol. 28, No. 4, April 2007.

Source: AMO

Explore further: Ultrafast graphene based photodetectors with data rates up to 50 GBit/s

Related Stories

Recommended for you

World's most sensitive dark matter detector completes search

July 21, 2016

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota, has completed its silent search for the missing ...

Weird quantum effects stretch across hundreds of miles

July 19, 2016

In the world of quantum, infinitesimally small particles, weird and often logic-defying behaviors abound. Perhaps the strangest of these is the idea of superposition, in which objects can exist simultaneously in two or more ...

Light-bulb moment for stock market behaviour

July 21, 2016

University of Adelaide physicists have discovered that the timing of electronic orders on the stock market can be mathematically described in the same way as the lifetime of a light bulb.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.