AMO Manufactures First Graphene Transistors

February 8, 2007
AMO Manufactures First Graphene Transistors

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Compared to conventional silicon and SOI MOSFETs the researchers realized a significant enhancement of electron and hole mobility.

Moore’s law, which has dictated ambitious innovation cycles to the semiconductor industry over the last decades, may finally be running out of steam. In the future, innovations for silicon technology may only be realized by integrating new functionalities or novel materials.

Carbon is one of the most probable candidates: impressive potential for nanoelectronics applications has been demonstrated with carbon nanotubes – and graphene!

A conventional CMOS-compatible process has been applied to fabricate a graphene field-effect device – a transistor made from a monolayer of carbon. The observed mobility in the devices exceeds the universal mobility in silicon MOSFETs. Furthermore, a second transistor gate was placed on top of the graphene film for the first time. AMO’s results confirm the high potential of graphene for future nanoelectronic devices.

First experimental details will be published in IEEE Electron Device Letters in April 2007.

Citation: M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, “A Graphene Field Effect Device”, IEEE Electron Device Letters, Vol. 28, No. 4, April 2007.

Source: AMO

Explore further: Ultrafast graphene based photodetectors with data rates up to 50 GBit/s

Related Stories

Recommended for you

Physicists discover new properties of superconductivity

February 4, 2016

New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential ...

Partitioning by collision

February 5, 2016

An ensemble consisting of a binary mixture of particles of equal size can partition itself into its component fractions - provided that the two species differ in their diffusion constants.

Leiden physicists entangle four rotating photons

February 3, 2016

For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled 'rotation'. So far this has only been ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.