Lead with a poisonous electron shield

Jan 16, 2007

It has been speculated that lead poisoning may have played a role in the fall of the Roman Empire: it is thought to have been caused by the concentration of grape juice in lead containers. Though the introduction of lead-free gasoline has reduced damage to the environment, the annual production of lead continues to increase worldwide because lead is still used in batteries, glass, and electronic components.

However, there has thus far been little research into what, at a molecular level, causes the toxic effects of lead. French researchers have now applied quantum chemistry to very simple enzyme models and gained new insights. As they have reported in Angewandte Chemie, it seems that the lead's "electron shield" is the main culprit.

Lead does the most damage to the nervous system, kidneys, liver, brain, and blood. These kinds of damage are especially severe for children as they can be irreversible. Complexation agents that grab onto the metal cations are used as antidotes. However, these agents are not lead-specific, meaning that they also remove other important metal cations from the body.

C. Gourlaouen and O. Parisel (Laboratoire de Chimie Théorique, Université Paris 6) took a closer look at two proteins to which lead likes to bind. Calmodulin, a calcium-binding protein, plays an important role in regulating and transporting the calcium cation in the human body. A calcium ion binds to seven ligands at the active centers of the enzyme. If one of the four possible calcium ions of calmodulin is replaced by lead, the lead ion remains roughly heptacoordinated, but this active center becomes distorted and inefficient; the three remaining sites get a reduced efficiency.

d-Aminolevulinic acid dehydratase is essential for the biosynthesis of hemoglobin. Inhibition of this enzyme disrupts the formation of blood to the point of anemia. At the active center, a zinc ion binds to four ligands, three of which involve a sulfur atom. When lead replaces zinc, it only binds to the three sulfur atoms. The reason for this is the emerging free electron pair of the lead cation. It acts as an electronic shield on one side, pushing away the fourth ligand. Such a dramatic geometrical distortion at the active center could explain why lead inhibits this enzyme.

The different behavior of lead in these two enzymes demonstrates that it can enter into complexes in which the metal–ligand bonds can either point in all directions, or into only one hemisphere, while the other hemisphere is filled by the free electron pair. This observation may help in the design of future lead-specific antidotes.

Citation: Olivier Parisel, Is an Electronic Shield at the Molecular Origin of Lead Poisoning? A Computational Modeling Experiment, Angewandte Chemie International Edition 2007, 46, No. 4, 553–556, doi: 10.1002/anie.200603037

Source: John Wiley & Sons

Explore further: A single molecule in the building blocks of life

Related Stories

Hydrogels block harmful oxygen from sensitive catalysts

Jun 15, 2015

An international research team has found a way of protecting sensitive catalysts from oxygen-caused damage. In the future, this could facilitate the creation of hydrogen fuel cells with molecular catalysts ...

Recommended for you

New CMI process recycles magnets from factory floor

1 hour ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

5 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

11 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Research could help point the finger at drug dealers

11 hours ago

An innovative technology pioneered by Sheffield Hallam University academics can detect the presence of a range of illegal and designer drugs from a single fingerprint, which could be a valuable new tool in bringing drug dealers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.