Lead with a poisonous electron shield

January 16, 2007

It has been speculated that lead poisoning may have played a role in the fall of the Roman Empire: it is thought to have been caused by the concentration of grape juice in lead containers. Though the introduction of lead-free gasoline has reduced damage to the environment, the annual production of lead continues to increase worldwide because lead is still used in batteries, glass, and electronic components.

However, there has thus far been little research into what, at a molecular level, causes the toxic effects of lead. French researchers have now applied quantum chemistry to very simple enzyme models and gained new insights. As they have reported in Angewandte Chemie, it seems that the lead's "electron shield" is the main culprit.

Lead does the most damage to the nervous system, kidneys, liver, brain, and blood. These kinds of damage are especially severe for children as they can be irreversible. Complexation agents that grab onto the metal cations are used as antidotes. However, these agents are not lead-specific, meaning that they also remove other important metal cations from the body.

C. Gourlaouen and O. Parisel (Laboratoire de Chimie Théorique, Université Paris 6) took a closer look at two proteins to which lead likes to bind. Calmodulin, a calcium-binding protein, plays an important role in regulating and transporting the calcium cation in the human body. A calcium ion binds to seven ligands at the active centers of the enzyme. If one of the four possible calcium ions of calmodulin is replaced by lead, the lead ion remains roughly heptacoordinated, but this active center becomes distorted and inefficient; the three remaining sites get a reduced efficiency.

d-Aminolevulinic acid dehydratase is essential for the biosynthesis of hemoglobin. Inhibition of this enzyme disrupts the formation of blood to the point of anemia. At the active center, a zinc ion binds to four ligands, three of which involve a sulfur atom. When lead replaces zinc, it only binds to the three sulfur atoms. The reason for this is the emerging free electron pair of the lead cation. It acts as an electronic shield on one side, pushing away the fourth ligand. Such a dramatic geometrical distortion at the active center could explain why lead inhibits this enzyme.

The different behavior of lead in these two enzymes demonstrates that it can enter into complexes in which the metal–ligand bonds can either point in all directions, or into only one hemisphere, while the other hemisphere is filled by the free electron pair. This observation may help in the design of future lead-specific antidotes.

Citation: Olivier Parisel, Is an Electronic Shield at the Molecular Origin of Lead Poisoning? A Computational Modeling Experiment, Angewandte Chemie International Edition 2007, 46, No. 4, 553–556, doi: 10.1002/anie.200603037

Source: John Wiley & Sons

Explore further: Insights into genomic instability during the early stages of embryonic cell development

Related Stories

Team shows a protein modification determines enzyme's fate

July 15, 2015

The human genome encodes roughly 20,000 genes, only a few thousand more than fruit flies. The complexity of the human body, therefore, comes from far more than just the sequence of nucleotides that comprise our DNA, it arises ...

Can gene editing provide a solution to global hunger?

July 6, 2015

According to the World Food Program, some 795 million people – one in nine people on earth – don't have enough food to lead a healthy active life. That will only get worse with the next global food crisis, predicted to ...

A triangular protein pump

July 6, 2015

Ludwig Maximilian University of Munich researchers have elucidated the structure of a molecular machine with an atypical triangular shape that is involved in peroxisome biogenesis, and characterized its conformation in different ...

Researchers discover new mechanism of DNA repair

July 3, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.