Method could help carbon nanotubes become commercially viable

October 4, 2006
Method could help carbon nanotubes become commercially viable
Single-walled carbon nanotubes are coated in soap-like molecules called surfactants, then spun at tens of thousands of rotations per minute in an ultracentrifuge. The resulting density gradient sorts the nanotubes according to diameter, twist and electronic structure. Credit: Zina Deretsky (adapted from Arnold et al.), NSF

Carbon nanotubes are intriguing new materials which have been highly touted for their exceptional mechanical, thermal, optical and electrical properties.

Researchers worldwide are striving to apply these nanostructures in electronics, high-resolution displays, high-strength composites and biosensors. A fundamental problem relating to their synthesis, however, has limited their widespread use.

Current methods for synthesizing carbon nanotubes produce mixtures of tubes that differ in their diameter and twist. Variations in electronic properties arise from these structural differences, resulting in carbon nanotubes that are unsuitable for most proposed applications.

Now, a new method developed at Northwestern University for sorting single-walled carbon nanotubes promises to overcome this problem. The method works by exploiting subtle differences in the buoyant densities of carbon nanotubes as a function of their size and electronic behavior. The results will be published online Wednesday, Oct. 4, in the inaugural issue of the journal Nature Nanotechnology (October 2006).

"Carbon nanotubes, because of their ultra-small size and excellent materials properties, have excited the scientific community for the last decade," said Mark Hersam, professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science, who led the research team.

"However, due to their inherent heterogeneity, they have not yet realized their full commercial potential," he said. "A scalable and economical method for producing monodisperse carbon nanotubes will enable the proposed applications for these nanomaterials to be explored at an industrially relevant scale."

Using the Northwestern method, carbon nanotubes first are encapsulated in water by soap-like molecules called surfactants. Next, the surfactant-coated nanotubes are sorted in density gradients which are spun at tens of thousands of rotations per minute in an ultracentrifuge. By carefully choosing the surfactants utilized during ultracentrifugation, the researchers found that carbon nanotubes could be sorted by diameter and electronic structure.

As a part of their study, the researchers demonstrated the fabrication of electrical devices that displayed either semiconducting or metallic behavior, depending on the sorted nanotubes used. The researchers also maintain that their technique can be translated to an industrial scale.

"The technique is especially promising for commercial applications," said Hersam, "because large-scale ultracentrifuges have already been developed and shown to be economically viable in the pharmaceutical industry. We anticipate that this precedent can be straightforwardly translated to the production of monodisperse carbon nanotubes."

Source: Northwestern University

Explore further: New process enables easier isolation of carbon nanotubes

Related Stories

New process enables easier isolation of carbon nanotubes

January 20, 2016

Manufacture of longer, thinner, and uncontaminated carbon nanotubes, and successfully isolating them, have been ongoing challenges for researchers. A newly developed method has opened up new possibilities in carbon nanotube ...

Resin film for stretchable electronics

December 28, 2015

Panasonic Corporation announced today that the company has developed a soft, flexible, and stretchable polymer resin film using its proprietary stretchable resin technology. The Company will also provide a transparent electrode ...

Recommended for you

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.