Compact tidal generator could reduce the cost of producing electricity from flowing water

June 13, 2006

What happens if you run an electric motor backwards? That is exactly what researchers Dr Steve Turnock and Dr Suleiman Abu-Sharkh from the University of Southampton asked themselves after they had successfully built an electric motor for tethered underwater vehicles, using funding from the Engineering and Physical Sciences Research Council.

The well-known answer to this question is that it stops being a motor and becomes a generator. Instead of using electricity to turn a propeller and drive the vehicle along, the flow of water turns the propeller, generating electricity. What's new about the Southampton design is its simplicity. "This is a compact design that does away with many of the moving parts found in current marine turbines. It's a new take on tidal energy generation," says Turnock.

Most current tidal stream generators are essentially wind turbines turned upside down and made to work underwater. They often include complex gearboxes and move the entire assembly to face the flow of the water. For example, they turn a half a circle as the tidal current reverses direction. Gears and moving parts require expensive maintenance, especially when they are used underwater. This pushes up the cost of running the turbines, a cost that is passed on to the consumers of the generated electricity. The Southampton design does not need to turn around because the design of its turbine blades means that they turn equally well, regardless of which way the water flows past them. The blades are also placed in a specially shaped housing that helps channel the water smoothly through the turbine.

Another beauty of the Southampton design is that everything is wrapped in a single package that can be prefabricated so there will be few on-site construction costs. "Just drop it into flowing water and it will start generating electricity. It will work best in fast flowing, shallow water," says Turnock, who foresees rows of these devices secured to sea floors and riverbeds.

The present prototype is just twenty-five centimetres across and the research team now plan to design a larger model with improved propeller blades that will further increase the efficiency of generating electricity. All being well, the team envisage the generator becoming commercially available within five years.

Source: Engineering and Physical Sciences Research Council

Explore further: Powerful patents: Navy outranks all government agencies in yearly report

Related Stories

Indoor candle device is designed to keep phones charged

July 17, 2015

An emergency generator for your phone at time of power outages? That's on offer in the form of a crowdfunded-campaign item called Candle Charger. It offers USB power when you need it, designed to keep phones souped up when ...

Wave energy device is watched for clean power in Hawaii

July 9, 2015

The U.S. government continues its interest in wave energy, saying it is "committed to supporting the growth of this emerging technology." Supporters of wave energy hope that it will one day be an important source of clean ...

Clean water for Nepal

July 23, 2015

On the steep, tea-covered hillsides of Ilam in eastern Nepal, where 25 percent of households live below the poverty level and electricity is scarce, clean running water is scarcer still. What comes out of the region's centralized ...

Recommended for you

Sydney makes its mark with electronic paper traffic signs

July 28, 2015

Visionect, which is in the business of helping companies build electronic paper display products, announced that Sydney has launched e-paper traffic signs. The traffic signage integrates displays from US manufacturer E Ink ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.