Related topics: genes · nerve cells · cells · protein · brain

Aggression de-escalation gene identified in fruit flies

The brain mechanisms that cause aggressive behavior have been well studied. Far less understood are the processes that tell the body when it's time to stop fighting. Now, a new study by Salk scientists identifies a gene and ...

'Soft' CRISPR may offer a new fix for genetic defects

Curing debilitating genetic diseases is one of the great challenges of modern medicine. During the past decade, development of CRISPR technologies and advancements in genetics research brought new hope for patients and their ...

Mapping the olfactory system in fruit flies

The distinctive smell of a flower… the unmistakable aroma of coffee… the dangers linked with inhaling smoke fumes. Sensory systems have evolved to provide us with immediate, finely tuned information about the world around ...

The physics behind a water bear's lumbering gait

Plump and ponderous, tardigrades earned the nickname "water bears" when scientists first observed the 0.02-inch-long animals' distinctive lumbering gaits in the 18th century. Their dumpy plod, however, raises the question ...

Lonely flies, like many humans, eat more and sleep less

COVID-19 lockdowns scrambled sleep schedules and stretched waistlines. One culprit may be social isolation itself. Scientists have found that lone fruit flies quarantined in test tubes sleep too little and eat too much after ...

page 1 from 40

Tephritidae

Bactrocera Ceratitis Paracantha Rhagoletis Tephritis Urophora Euaresta Xyphosia hundreds more

Tephritidae is one of two fly families referred to as "fruit flies". Tephritidae does not include the biological model organisms of the genus Drosophila, which is often called the "common fruit fly". Drosophila is, instead, the type genus of the second "fruit fly" family, Drosophilidae. There are nearly 5,000 described species of tephritid fruit fly, categorized in almost 500 genera. Description, recategorization, and genetic analysis are constantly changing the taxonomy of this family. To distinguish them from the Drosophilidae, the Tephritidae are sometimes called peacock flies.

Tephritid fruit flies are of major importance in agriculture. Some have negative effects, some positive. Various species of fruit fly cause damage to fruit and other plant crops. The genus Bactrocera is of worldwide notoriety for its destructive impact on agriculture. The olive fruit fly (B. oleae), for example, feeds on only one plant: the wild or commercially cultivated olive. It has the capacity to ruin 100% of an olive crop by damaging the fruit. On the other hand, some fruit flies are used as agents of biological control, thereby reducing the populations of pest species. Several species of the fruit fly genus Urophora are questionable in their effectiveness as control agents against rangeland-destroying noxious weeds such as starthistles and knapweeds.

Most fruit flies lay their eggs in plant tissues, where the larvae find their first food upon emerging. The adults usually have a very short lifespan. Some live for less than a week.

Fruit flies use an open circulatory system as their cardiovascular system.

Their behavioral ecology is of great interest to biologists. Some fruit flies have extensive mating rituals or territorial displays. Many are brightly colored and visually showy. Some fruit flies show Batesian mimicry, bearing the colors and markings of dangerous insects such as wasps because it helps the fruit flies to avoid predators; the flies, of course, lack stingers.

This text uses material from Wikipedia, licensed under CC BY-SA