Neutron experiments reveal what maintains good function in bones

Around 500 million years ago, early vertebrates in the seas became fish, adopting an inner skeleton and a flexible spine based on a nanocomposite of fibers and mineral, known as bone material. This "invention" of evolution ...

Earth's inner core may be oxygen-rich

Oxygen is the key substance for life and one of the most abundant elements in the Earth. However, it's still unknown whether oxygen is present (and in which form it may exist) in the inner core, which is composed of almost ...

Say hello to the toughest material on Earth

Scientists have measured the highest toughness ever recorded, of any material, while investigating a metallic alloy made of chromium, cobalt, and nickel (CrCoNi). Not only is the metal extremely ductile—which, in materials ...

Measuring times in billionths of a billionth of a second

How fast do electrons inside a molecule move? Well, it is so fast that it takes them just a few attoseconds (a billionth of billionth of a second) to jump from one atom to another. Blink and you missed it—millions of billions ...

page 1 from 40

Electron configuration

In atomic physics and quantum chemistry, electron configuration is the arrangement of electrons of an atom, a molecule, or other physical structure. It concerns the way electrons can be distributed in the orbitals of the given system (atomic or molecular for instance).

Like other elementary particles, the electron is subject to the laws of quantum mechanics, and exhibits both particle-like and wave-like nature. Formally, the quantum state of a particular electron is defined by its wave function, a complex-valued function of space and time. According to the Copenhagen interpretation of quantum mechanics, the position of a particular electron is not well defined until an act of measurement causes it to be detected. The probability that the act of measurement will detect the electron at a particular point in space is proportional to the square of the absolute value of the wavefunction at that point.

An energy is associated to each electron configuration and, upon certain conditions, electrons are able to move from one orbital to another by emission or absorption of a quantum of energy, in the form of a photon.

Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements. The concept is also useful for describing the chemical bonds that hold atoms together. In bulk materials this same idea helps explain the peculiar properties of lasers and semiconductors.

This text uses material from Wikipedia, licensed under CC BY-SA