Into the quantum internet at the speed of light

Not only do optical fibers transmit information every day around the world at the speed of light, but they can also be harnessed for the transport of quantum information. In the current issue of Nature Photonics, a research ...

New antimatter method to provide 'a major experimental advantage'

(Phys.org)—Researchers have proposed a method for cooling trapped antihydrogen which they believe could provide 'a major experimental advantage' and help to map the mysterious properties of antimatter that have to date ...

First entanglement between light and optical atomic coherence

Using clouds of ultra-cold atoms and a pair of lasers operating at optical wavelengths, researchers have reached a quantum network milestone: entangling light with an optical atomic coherence composed of interacting atoms ...

Trapping giant Rydberg atoms for faster quantum computers

In an achievement that could help enable fast quantum computers, University of Michigan physicists have built a better Rydberg atom trap. Rydberg atoms are highly excited, nearly-ionized giants that can be thousands of times ...

Testing quantum field theory in a quantum simulator

Quantum field theories are often hard to verify in experiments. Now, there is a new way of putting them to the test. Scientists have created a quantum system consisting of thousands of ultra cold atoms. By keeping them in ...

page 2 from 5