This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

proofread

Scientists discover quantum oscillations in correlated insulators

Scientists discover quantum oscillations in correlated insulators
Quantum oscillations in correlated insulator at v = -2. Credit: YANG Wei

Quantum oscillations (QOs) of conductance in the magnetic field are widely observed in mesoscopic devices thanks to the Landau quantization, and thus QOs are commonly used as a powerful tool to measure the Fermi surface of metals. In contrast, QOs are usually absent for insulators due to the zero density of state in the gap.

A team led by Dr. Yang Wei and Dr. Zhang Guangyu from the Institute of Physics of the Chinese Academy of Sciences (CAS) reported the observation of anomalous quantum oscillations of correlated insulators in twisted double-bilayer graphene. Their paper, entitled "Quantum oscillations in field-induced correlated insulators of a moiré superlattice," was published in Science Bulletin.

Graphene-based moiré superlattices, which consist of two pieces of single or multilayer graphene stacked at a twisted angle, are known to host moiré flat bands and correlated states. A typical example is twisted double-bilayer graphene (2+2), whose band structure can be further tuned by electric field in addition to the twist angle, thus allowing tuning of flat bands and correlation strength in situ.

In this study, the researchers observed the spin-polarized and valley-polarized correlated insulators when the moiré bands were half filled in 2+2. With its highly tunable nature, 2+2 provides a new platform for discovering new exotic phases in the correlated insulating states.

Scientists discover quantum oscillations in correlated insulators
vidence of Metal to insulator transition and insulating behavior of the quantum oscillations. Credit: YANG Wei

The team has long been devoted to exploring the quantum transport behavior in moiré superlattices. Previously, they found that new correlated insulators with valley polarizations appear at half fillings of energy bands in twisted double bilayer graphene, thanks to the orbital Zeeman effect in perpendicular magnetic field.

To their surprise, they found that the resistance of correlated insulators in 2+2 oscillates periodically with the inverse of the , similar to the Shubnikov de Haas oscillations in metal. The bulk insulating evidence of the QOs is revealed in the high oscillation amplitude of ~150 kΩ and its temperature dependence, as well as the antiphase behavior.

Moreover, the insulating QOs are strongly tunable by electric field. The carrier density extracted from the 1/B periodicity decreases almost linearly with D from -0.7 to -1.1V/nm, suggesting a reduced Fermi surface; the from the Lifshitz-Kosevich analysis depends nonlinearly on perpendicular electrical displacement field (D), reaching a minimum value of 0.1me at D = ~ -1.0V/nm.

  • Scientists discover quantum oscillations in correlated insulators
    Electrical field tunable quantum oscillations. Credit: YANG Wei
  • Scientists discover quantum oscillations in correlated insulators
    Quantum oscillations in a hybridized gap with band inversion. Credit: YANG Wei

To account for these anomalous phenomena, the researchers built a phenomenological inverted band model. With parameters extracted from experiments, density of states calculations from the model qualitatively reproduce the tunable QOs of correlated insulators.

The observation of QOs of insulators in this study establishes a close connection to other strongly correlated systems such as Kondo insulators, , and excitonic , and it strongly suggests that more exotic phases are to be discovered in this system.

More information: Le Liu et al, Quantum oscillations in field-induced correlated insulators of a moiré superlattice, Science Bulletin (2023). DOI: 10.1016/j.scib.2023.05.006

Citation: Scientists discover quantum oscillations in correlated insulators (2023, June 13) retrieved 28 April 2024 from https://phys.org/news/2023-06-scientists-quantum-oscillations-insulators.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

A glimpse inside a graphene sandwich

9 shares

Feedback to editors