This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source


Toward a safer material for artificial muscles

Toward a safer material for artificial muscles
Graphical abstract. Credit: ACS Applied Materials & Interfaces (2023). DOI: 10.1021/acsami.2c23026

Whether wriggling your toes or lifting groceries, muscles in your body smoothly expand and contract. Some polymers can do the same thing—acting like artificial muscles—but only when stimulated by dangerously high voltages. Now, researchers in ACS Applied Materials & Interfaces report a series of thin, elastic films that respond to substantially lower electrical charges. The materials represent a step toward artificial muscles that could someday operate safely in medical devices.

Artificial muscles could become key components of movable soft robotic implants and functional artificial organs. Electroactive elastomers, such as bottlebrush polymers, are attractive materials for this purpose because they start soft but stiffen when stretched. And they can change shape when electrically charged. However, currently available bottlebrush films only move at voltages more than 4,000 V, which exceeds the 50 V maximum that the U.S. Occupational Safety & Health Administration states is safe.

Reducing the thickness of these films to less than 100 µm could lower the required voltages, but this hasn't been done successfully yet for bottlebrush polymers. So, Dorina Opris and colleagues wanted to find a simple way to produce thinner films.

The researchers synthesized a suite of bottlebrush polymers by reacting norbornene-grafted polydimethylsiloxane macromonomers and cross-linking the products by . A 60-µm-thick material was the most electroactive, expanding more than previously reported elastomers, with an operating voltage of 1,000 V. And a circular actuator made out of that material expanded and contracted more than 10,000 times before degrading.

In another set of experiments, the researchers introduced polar side chains to the polymers and produced that responded to voltages as low as 800 V. However, they didn't expand as much as the team's most electroactive film. Based on the results, the researchers say that, with some tweaks, the material could someday be used to develop durable implants and other that work at safer voltages.

More information: Yeerlan Adeli et al, On-Demand Cross-Linkable Bottlebrush Polymers for Voltage-Driven Artificial Muscles, ACS Applied Materials & Interfaces (2023). DOI: 10.1021/acsami.2c23026

Citation: Toward a safer material for artificial muscles (2023, April 12) retrieved 12 June 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New 'bottlebrush' electroactive polymers make dielectric elastomers increasingly viable for use in devices


Feedback to editors