Study examines the effects of ocean acidification on phytoplankton's energy stores

Credit: Pixabay/CC0 Public Domain

Ocean acidification—which is mainly caused by carbon dioxide gas in the atmosphere dissolving into the ocean—is a significant threat to the structure and function of marine life. In a study published in the New Phytologist, investigators have uncovered the different effects that ocean acidification has on the energy stores of phytoplankton (single-celled plants that are critical to the aquatic food chain) called diatoms.

The work focused on diatoms from a natural Antarctic phytoplankton community exposed to a gradient of carbon dioxide levels. Certain diatoms showed preferences towards proteins at high carbon dioxide levels, while others increased both lipid and protein stores.

Studying these adaptations to carbon dioxide levels may reveal how phytoplankton responses to could have cascading effects on food web dynamics in the world's oceans.

"To date, we know little about how will affect the nutritional value of phytoplankton. Our study showed that diatom species exposed to acidified conditions change the way they store excess energy in unique ways," said senior author Katherina Petrou, Ph.D., Associate Professor at the University of Technology Sydney. "Our work suggests that ocean acidification will influence the type of energy available at the base of the food web, which ultimately could affect the productivity of our marine ecosystems."

More information: Rebecca J. Duncan et al, Ocean acidification alters the nutritional value of Antarctic diatoms, New Phytologist (2022). DOI: 10.1111/nph.17868

Journal information: New Phytologist

Provided by Wiley

Citation: Study examines the effects of ocean acidification on phytoplankton's energy stores (2022, January 6) retrieved 3 October 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New threat from ocean acidification emerges in the Southern Ocean


Feedback to editors