Scientists reveal new mechanism of xenogeneic silencing in bacteria

Scientists reveal new mechanism of xenogeneic silencing in bacteria
A proposed mechanism of xenogeneic silencing by H-NS. Credit: LIU Xiaoxiao, SCSIO

Lateral gene transfer (LGT) plays a prominent role in the genome evolution and environmental adaptation of prokaryotes.

Xenogeneic silencing proteins can selectively silence the newly acquired DNA molecules to protect cells from the detrimental effects of LGT . H-NS, a nucleoid-associated DNA-binding protein, is an important xenogeneic silencer.

Recently, Dr. Liu Xiaoxiao and other researchers in Dr. Wang Xiaoxue's group from the South China Sea Institute of Oceanology (SCSIO) of the Chinese Academy of Sciences found a key process of xenogeneic silencing by studying Shewanella. The silencing of prophage relied on a -dependent posttranslational modification of the host H-NS in S. oneidensis.

This work was published in Nucleic Acids Research on March 8. It is the first to show that posttranslational modification of H-NS can function as a regulatory switch to regulate the prophage activity in host genomes.

Researchers from Wang's group showed that H-NS "silenced" the prophage by recognizing the excisionase of the prophage. At , most of the H-NS protein in the cell was phosphorylated. Phosphorylated H-NS could silence the expression of cytotoxic genes on the prophage.

However, low temperature promoted the dephosphorylation of H-NS and changed the binding of H-NS to DNA, which relieved these genes expression. By this way, the H-NS silenced the specific prophage and helped Shewanella to adapt to the low temperature environment.

Specifically, phosphorylation of H-NS at Ser42 was critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepressed the promoter activity of these genes/operons to enable their expression at .

The results of the study illustrate a new way of decision-making for xenogeneic silencing in response to temperature shifts in bacteria and provide new insights for our understanding of how bacteria silence and activate the LGT genes in response to .

More information: Xiaoxiao Liu et al. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella, Nucleic Acids Research (2021). DOI: 10.1093/nar/gkab137

Citation: Scientists reveal new mechanism of xenogeneic silencing in bacteria (2021, March 16) retrieved 10 July 2024 from https://phys.org/news/2021-03-scientists-reveal-mechanism-xenogeneic-silencing.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Scientists uncover prophage defense mechanisms against phage attacks in mycobacteria

4 shares

Feedback to editors