Plant roots increase carbon emission from permafrost soils

carbon emission
Credit: Unsplash/CC0 Public Domain

A key uncertainty in climate projections is the amount of carbon emitted by thawing permafrost in the Arctic. Plant roots in soil stimulate microbial decomposition, a mechanism called the priming effect. An international research team co-lead by Frida Keuper from INRAE and Umeå University and Birgit Wild from Stockholm University shows that the priming effect alone can cause emission of 40 billion tons carbon from permafrost by 2100. The study was published today in Nature Geoscience.

Permafrost is permanently frozen ground which stores as much as there is in all plants on Earth and in the atmosphere together. The surface of the permafrost thaws in summer, allowing plant and soil life to thrive. When microorganisms breathe, they emit greenhouse gasses. Scientists have previously anticipated that rapidly rising temperatures will drive the emission of 50-100 billion ton permafrost carbon by 2100. On top of that, feed sugar to the microorganisms in the soil, which the microbes can use to break down more soil —the —resulting in even higher greenhouse gas emissions.

"We have known about the priming effect since the 1950's, but we did not know whether or not this small-scale ecological interaction had a significant impact on the ," says research scientist Frida Keuper with the French National Research Institute for Agriculture, Food and Environment, INRAE, and with Umeå University, Sweden.

The researchers combined maps of plant activity and data on soil carbon content from the Northern Circumpolar Soil Carbon Database with an extensive literature survey on priming and plant root properties, to estimate the priming effect in permafrost ecosystems and its influence on greenhouse gas emissions.

They show that the priming effect increases soil microbial respiration by 12 percent, which causes the additional loss of 40 billion tons of carbon by 2100 compared to current predictions for permafrost. This equals almost a quarter of the remaining "carbon budget" for human activities to limit global warming to max 1.5°C.

"These new findings demonstrate how important it is to consider small-scale ecological interactions, such as the priming effect, in global greenhouse gas emission modeling," says Birgit Wild, assistant professor at Stockholm University.

More information: Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming, Nature Geoscience (2020). DOI: 10.1038/s41561-020-0607-0

Journal information: Nature Geoscience

Provided by Umea University

Citation: Plant roots increase carbon emission from permafrost soils (2020, July 20) retrieved 2 October 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Carbon emission from permafrost soils underestimated by 14%


Feedback to editors