3-D printing methods enable manufactured nanofilms with multiple axes of alignment

Three-dimensional chessboards
Fig.1. Development concept of nanocellulosic oriented film based on liquid-phase 3D patterning technology. Credit: Osaka University

Researchers at The Institute of Scientific and Industrial Research at Osaka University introduced a new liquid-phase fabrication method for producing nanocellulose films with multiple axes of alignment. Using 3-D-printing methods for increased control, this work may lead to cheaper and more environmentally friendly optical and thermal devices.

Ever since appearing on the original "Star Trek" TV show in the 1960s, the game of three-dimensional chess has been used as a metaphor for sophisticated thinking. Now, researchers at Osaka University have developed their own version with potential applications in and inexpensive smartphone displays.

Many existing optical devices, including liquid-crystal displays (LCDs) found in older flat-screen televisions, rely on long needle-shaped molecules aligned in the same direction. However, getting fibers to line up in multiple directions on the same device is much more difficult. Having a method that can reliably and cheaply produce optical fibers would accelerate the manufacture of low-cost displays or even "paper electronics"—computers that could be printed from biodegradable materials on demand.

Cellulose, the primary component of cotton and wood, is an abundant renewable resource made of long molecules. Nanocelluloses are nanofibers made of uniaxially aligned cellulose molecular chains that have different optical and heat conduction properties along one direction compared to the another.

Three-dimensional chessboards
Fig.2. Multiaxis nanocellulose-oriented film. Credit: Osaka University

In newly published research from the Institute of Scientific and Industrial Research at Osaka University, nanocellulose was harvested from sea pineapples, a kind of sea squirt. The researchers then used liquid-phase 3-D-pattering, which combined the wet spinning of nanofibers with the precision of 3-D-printing. A custom-made triaxial robot dispensed a nanocellulose aqueous suspension into an acetone coagulation bath.

"We developed this liquid-phase three-dimensional patterning technique to allow for alignment along any preferred axis," says first author Kojiro Uetani. The direction of the patterns could be programmed so that it formed an alternating checkerboard pattern of vertically- and horizontally-aligned fibers.

To demonstrate the method, a film was sandwiched between two orthogonal polarizing films. Under the proper viewing conditions, a birefringent checkerboard pattern appeared. They also measured the thermal transfer and optical retardation properties.

"Our findings could aid in the development of next-generation optical materials and paper electronics," says senior author Masaya Nogi. "This could be the start of bottom-up techniques for building sophisticated and energy-efficient optical and thermal materials."


Explore further

From nata de coco to computer screens: Cellulose gets a chance to shine

More information: Kojiro Uetani et al. Checkered Films of Multiaxis Oriented Nanocelluloses by Liquid-Phase Three-Dimensional Patterning, Nanomaterials (2020). DOI: 10.3390/nano10050958
Provided by Osaka University
Citation: 3-D printing methods enable manufactured nanofilms with multiple axes of alignment (2020, May 19) retrieved 31 May 2020 from https://phys.org/news/2020-05-d-methods-enable-nanofilms-multiple.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
4 shares

Feedback to editors

User comments