Stand-up pouches from renewable raw materials and nanocellulose

March 14, 2017, VTT Technical Research Centre of Finland
Credit: Technical Research Centre of Finland (VTT)

VTT Technical Research Centre of Finland Ltd has developed lightweight 100% bio-based stand-up pouches with high technical performance. High performance in both oxygen, grease and mineral oil barrier properties has been reached by using different biobased coatings on paper substrate. The pouches exploit VTT's patent pending high consistency enzymatic fibrillation of cellulose (HefCel) technology.

"One-third of food produced for human consumption is lost or wasted globally. Packaging with efficient barrier properties is a crucial factor in the reduction of the food loss. Our solution offers an environmentally friendly option for the global packaging industry", says Senior Scientist Jari Vartiainen of VTT.

VTT's HefCel technology provides a low-cost method for the production of nanocellulose resulting in a tenfold increase in the solids content of nanocellulose. Nanocellulose has been shown to be potentially very useful for a number of future technical applications. The densely packed structure of nanocellulose films and coatings enable their outstanding oxygen, grease and mineral oil barrier properties.

HefCel technology exploits industrial enzymes and simple mixing technology as tools to fibrillate cellulose into nanoscale fibrils without the need for high energy consuming process steps. The resulting nanocellulose is in the consistency of 15-25% when traditional nanocellulose production methods result in 1-3% consistency.

Credit: Technical Research Centre of Finland (VTT)

The stand-up pouch is the fastest growing type of packaging, growing at a rate of 6.5% per year from 2015-2020. Fossil-based plastic films still dominate the packaging market. However, the development of environmentally friendly new materials is of growing importance. Nanocellulose has been shown to be potentially very useful for a number of future technical applications.

VTT has solid expertise in various bio-based raw materials and their application technologies for producing bio-based coatings, films and even multilayered structures both at lab-scale and pilot-scale. A versatile set of piloting facilities are available from raw material sourcing through processing to application testing and demonstration.

Explore further: Nanocellulose enables the manufacturing of new environmentally friendly materials

Related Stories

Nanocellulose sponges to combat oil pollution

May 6, 2014

A new, absorbable material from Empa wood research could be of assistance in future oil spill accidents: a chemically modified nanocellulose sponge. The light material absorbs the oil spill, remains floating on the surface ...

The transition from carbon energy sources to the bioeconomy

March 10, 2017

The transition from fossil-based raw materials to renewables has already begun, and tomorrow's bioeconomy is being created today. As part of its Bioeconomy Transformation spearhead programme, VTT Technical Research Centre ...

Recommended for you

Researchers report breakthrough in ice-repelling materials

January 15, 2019

Icy weather is blamed for multibillion dollar losses every year in the United States, including delays and damage related to air travel, infrastructure and power generation and transmission facilities. Finding effective, ...

Research finds serious problems with forensic software

January 15, 2019

New research from North Carolina State University and the University of South Florida finds significant flaws in recently released forensic software designed to assess the age of individuals based on their skeletal remains. ...

The secret to Rembrandt's impasto unveiled

January 15, 2019

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists ...

Researchers gain control over soft-molecule synthesis

January 14, 2019

By gaining control over shape, size and composition during synthetic molecule assembly, researchers can begin to probe how these factors influence the function of soft materials. Finding these answers could help advance virology, ...

Marine bacterium sheds light on control of toxic metals

January 14, 2019

An ocean-dwelling bacterium has provided fresh insights into how cells protect themselves from the toxic effects of metal ions such as iron and copper, in research led by the University of East Anglia (UEA).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.