Making tiny antennas for wearable electronics

Making tiny antennas for wearable electronics
Credit: American Chemical Society

When it comes to electronics, bigger usually isn't better. This is especially true for a new generation of wearable communication systems that promise to connect people, machines and other objects in a wireless "internet of things." To make the devices small and comfortable enough to wear, scientists need to miniaturize their components. Now, researchers in ACS Nano have made the tiniest radio-frequency antennas reported yet, with thicknesses of about 1/100 of a human hair.

Antennas that receive and transmit are usually made of metal conductors, such as aluminum, copper and silver. Although these materials have , they do not perform well in ultrathin, lightweight antennas. As a result, most metal-based antennas are thicker than 30 micrometers in diameter, which limits their application in miniaturized electronic devices. To make even tinier antennas, Keun-Young Shin, Ho Seok Park and colleagues wanted to try using extremely thin sheets of a 2-D material that consisted of a layer of metallic niobium atoms sandwiched between two layers of selenium atoms (NbSe2).

The researchers made their antenna by spray-coating several layers of NbSe2 nanosheets onto a plastic substrate. They then tested the 885 nm-thick antenna, finding that a 10 × 10 mm2 patch of the ultrathin material performed well, with a radiation efficiency of 70.6%. The device propagated radio frequency waves in all directions. By changing the length of the antenna, the frequency could be tuned from 2.01 to 2.80 GHz, which includes the frequency required by Bluetooth and Wi-Fi technologies. Also, the could be bent and stretched without large changes in its performance. In addition to wearable electronics, the new antennas could someday find applications in deep space communications systems because the material would become a superconductor in the very cold temperatures of outer space, the researchers say.


Explore further

132 grams to communicate with Mars

More information: Girish Sambhaji Gund et al. Two-Dimensional Metallic Niobium Diselenide for Sub-micrometer-Thin Antennas in Wireless Communication Systems, ACS Nano (2019). DOI: 10.1021/acsnano.9b06732
Journal information: ACS Nano

Citation: Making tiny antennas for wearable electronics (2019, November 20) retrieved 16 December 2019 from https://phys.org/news/2019-11-tiny-antennas-wearable-electronics.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
69 shares

Feedback to editors

User comments