Improved regulation needed as pesticides found to affect genes in bees

March 7, 2019, Queen Mary, University of London
Bumblebee colony. Credit: TJ Colgan

Scientists are urging for improved regulation on pesticides after finding that they affect genes in bumblebees, according to research led by Queen Mary University of London in collaboration with Imperial College London.

For the first time, researchers applied a biomedically inspired approach to examine changes in the 12,000 genes that make up bumblebee workers and queens after .

The study, published in Molecular Ecology, shows that genes which may be involved in a broad range of biological processes are affected.

They also found that queens and workers respond differently to pesticide exposure and that one pesticide they tested had much stronger effects than the other did.

Other recent studies, including previous work by the authors, have revealed that exposure even to low doses of these neurotoxic pesticides is detrimental to colony function and survival as it impairs bee behaviours including the ability to obtain pollen and nectar from flowers and the ability to locate their nests.

This new approach provides high-resolution information about what is happening at a inside the bodies of the bumblebees.

Some of these changes in may represent the mechanisms that link intoxification to impaired behaviour.

Lead author of the study Dr. Yannick Wurm, from Queen Mary University of London, said: "Governments had approved what they thought were 'safe' levels but pesticides intoxicate many pollinators, reducing their dexterity and cognition and ultimately survival. This is a major risk because pollinators are declining worldwide yet are essential for maintaining the stability of the ecosystem and for pollinating crops.

"While newer pesticide evaluation aims to consider the impact on behaviour, our work demonstrates a highly sensitive approach that can dramatically improve how we evaluate the effects of pesticides."

The researchers exposed colonies of bumblebees to either clothianidin or imidacloprid at field-realistic concentrations while controlling for factors including colony social environment and worker age.

They found clothianidin had much stronger effects than imidacloprid—both of which are in the category of 'neonicotinoid' pesticides and both of which are still used worldwide although they were banned in 2018 for outdoor use by the European Union.

For worker bumblebees, the activity levels of 55 genes were changed by exposure to clothianidin with 31 genes showing higher activity levels while the rest showed lower activity levels after exposure.

This could indicate that their bodies are reorienting resources to try to detoxify, which the researchers suspect is what some of the genes are doing. For other genes, the changes could represent the intermediate effects of intoxification that lead to affected behaviour.

The trend differed in queen bumblebees as 17 had changed activity levels, with 16 of the 17 having higher activity levels after exposure to the clothianidin pesticide.

Dr. Joe Colgan, first author of the study and also from Queen Mary University of London, said: "This shows that worker and bumblebees are differently wired and that the pesticides do not affect them in the same way. As workers and queens perform different but complementary activities essential for colony function, improving our understanding of how both types of colony member are affected by pesticides is vital for assessing the risks these chemicals pose."

The researchers believe that the approach they have demonstrated must now be applied more broadly. This will provide detailed information on how pesticides differ in the effects they have on beneficial species, and why species may differ in their susceptibility.

Dr. Colgan said: "We examined the effects of two pesticides on one species of . But hundreds of pesticides are authorised, and their effects are likely to substantially differ across the 200,000 pollinating insect species which also include other bees, wasps, flies, moths, and butterflies."

Dr. Wurm added: "Our work demonstrates that the type of high-resolution molecular approach that has changed the way human diseases are researched and diagnosed, can also be applied to beneficial pollinators. This approach provides an unprecedented view of how bees are being affected by and works at large scale. It can fundamentally improve how we evaluate the toxicity of chemicals we put into nature."

Explore further: Study uncovers new link between neonicotinoid pesticide exposure and bumblebee decline

More information: 'Caste- and pesticide-specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees'. Thomas J. Colgan, Isabel K. Fletcher, Andres N. Arce, Richard J. Gill, Ana Ramos Rodrigues, Eckart Stolle, Lars Chittka and Yannick Wurm. Molecular Ecology.

Related Stories

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

Turn off a light, save a life, says new study

March 20, 2019

We all know that turning off lights and buying energy-efficient appliances affects our financial bottom line. Now, according to a new study by University of Wisconsin-Madison researchers, we know that saving energy also saves ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

unrealone1
5 / 5 (1) Mar 07, 2019
"pesticides found to affect genes in bees"
What about the genes of Humans?
TheGhostofOtto1923
not rated yet Mar 07, 2019
what about us peoples??
-Easy enough to look up and share with the community.

"Pesticides... associated with impaired fertility in males.[22] Pesticide exposure resulted in reduced fertility in males, genetic alterations in sperm, a reduced number of sperm, damage to germinal epithelium and altered hormone function"

"Strong evidence links pesticide exposure to birth defects, fetal death and altered fetal growth."

-IOW the added advantage of reducing the birthrate.

But without pesticides there wouldn't be enough food to feed the masses. They're a necessary evil given the far greater evil of religion-fueled overpopulation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.